Skip to content
Archive of posts filed under the Bayesian Statistics category.

Adiabatic as I wanna be: Or, how is a chess rating like classical economics?

Chess ratings are all about change. Did your rating go up, did it go down, have you reached 2000, who’s hot, who’s not, and so on. If nobody’s abilities were changing, chess ratings would be boring, they’d be nothing but a noisy measure, and watching your rating change would be as exciting as watching a […]

Paul Meehl continues to be the boss

Lee Sechrest writes: Here is a remarkable paper, not well known, by Paul Meehl. My research group is about to undertake a fresh discussion of it, which we do about every five or ten years. The paper is now more than a quarter of a century old but it is, I think, dramatically pertinent to […]

Why I don’t use the terms “fixed” and “random” (again)

A couple months ago we discussed this question from Sean de Hoon: In many cross-national comparative studies, mixed effects models are being used in which a number of slopes are fixed and the slopes of one or two variables of interested are allowed to vary across countries. The aim is often then to explain the […]

Bayesian models, causal inference, and time-varying exposures

Mollie Wood writes: I am a doctoral student in clinical and population health research. My dissertation research is on prenatal medication exposure and neurodevelopmental outcomes in children, and I’ve encountered a difficult problem that I hope you might be able to advise me on. I am working on a problem in which my main exposure […]

Interactive demonstrations for linear and Gaussian process regressions

Here’s a cool interactive demo of linear regression where you can grab the data points, move them around, and see the fitted regression line changing. There are various such apps around, but this one is particularly clean: (I’d like to credit the creator but I can’t find any attribution at the link, except that it’s […]

My talk tomorrow (Thurs) at MIT political science: Recent challenges and developments in Bayesian modeling and computation (from a political and social science perspective)

It’s 1pm in room E53-482. I’ll talk about the usual stuff (and some of this too, I guess).

One simple trick to make Stan run faster

Did you know that Stan automatically runs in parallel (and caches compiled models) from R if you do this: source(“”) It’s from Stan core developer Ben Goodrich. This simple line of code has changed my life. A factor-of-4 speedup might not sound like much, but, believe me, it is!

Introducing shinyStan

As a project for Andrew’s Statistical Communication and Graphics graduate course at Columbia, a few of us (Michael Andreae, Yuanjun Gao, Dongying Song, and I) had the goal of giving RStan’s print and plot functions a makeover. We ended up getting a bit carried away and instead we designed a graphical user interface for interactively exploring virtually […]

Bayes and doomsday

Ben O’Neill writes: I am a fellow Bayesian statistician at the University of New South Wales (Australia).  I have enjoyed reading your various books and articles, and enjoyed reading your recent article on The Perceived Absurdity of Bayesian Inference.  However, I disagree with your assertion that the “doomsday argument” is non-Bayesian; I think if you read […]

Statistical Significance – Significant Problem?

John Carlin, who’s collaborated on some of my recent work on Type S and Type M errors, prepared this presentation for a clinical audience. It might be of interest to some of you. The ideas and some of the examples should be familiar to regular readers of this blog, but it could be useful to […]