Vincent Picaud developed a Mathematica interface to Stan: MathematicaStan You can find everything you need to get started by following the link above. If you have questions, comments, or suggestions, please let us know through the Stan user’s group or the GitHub issue tracker. MathematicaStan interfaces to Stan through a CmdStan process. Stan programs are […]

**Bayesian Statistics**category.

## Webinar: Introduction to Bayesian Data Analysis and Stan

This post is by Eric. We are starting a series of free webinars about Stan, Bayesian inference, decision theory, and model building. The first webinar will be held on Tuesday, October 25 at 11:00 AM EDT. You can register here. Stan is a free and open-source probabilistic programming language and Bayesian inference engine. In this […]

## Is it fair to use Bayesian reasoning to convict someone of a crime?

Ethan Bolker sends along this news article from the Boston Globe: If it doesn’t acquit, it must fit Judges and juries are only human, and as such, their brains tend to see patterns, even if the evidence isn’t all there. In a new study, researchers first presented people with pieces of evidence (a confession, an […]

## Tenure Track Professor in Machine Learning, Aalto University, Finland

Posted by Aki. I promise that next time I’ll post something else than a job advertisement, but before that here’s another great opportunity to join Aalto Univeristy where I work, too. “We are looking for a professor to either further strengthen our strong research fields, with keywords including statistical machine learning, probabilistic modelling, Bayesian inference, […]

## Mister P can solve problems with survey weighting

It’s tough being a blogger who’s expected to respond immediately to topics in his area of expertise. For example, here’s Scott “fraac” Adams posting on 8 Oct 2016, post titled “Why Does This Happen on My Vacation? (The Trump Tapes).” After some careful reflection, Adams wrote, “My prediction of a 98% chance of Trump winning […]

## The real dogs and the stat-dogs

One of the earliest examples of simulation-based model checking in statistics comes from the 1954 book by Robert Bush and Frederick Mosteller, Stochastic Models for Learning. They fit a probability model to data on dogs being shocked in a research lab (yeah, I know, not an experiment that would be done today). Then they simulate […]

## StanCon: now accepting registrations and submissions

As we announced here a few weeks ago, the first Stan conference will be Saturday, January 21, 2017 at Columbia University in New York. We are now accepting both conference registrations and submissions. Full details are available at StanCon page on the Stan website. If you have any questions please let us know and we […]

## He wants to get started on Bayes

Mathew Mercuri writes: I am interested in learning how to work in a Bayesian world. I have training in a frequentist approach, specifically from an applied health scientist/epidemiologist approach. However, while i teach courses in applied statistics, I am not particularly savvy with heavy statistical mathematics, so I am a bit worried bout how to […]

## Trump +1 in Florida; or, a quick comment on that “5 groups analyze the same poll” exercise

Nate Cohn at the New York Times arranged a comparative study on a recent Florida pre-election poll. He sent the raw data to four groups (Charles Franklin; Patrick Ruffini; Margie Omero, Robert Green, Adam Rosenblatt; and Sam Corbett-Davies, David Rothschild, and me) and asked each of us to analyze the data how we’d like to […]

## “Crimes Against Data”: My talk at Ohio State University this Thurs; “Solving Statistics Problems Using Stan”: My talk at the University of Michigan this Fri

Crimes Against Data Statistics has been described as the science of uncertainty. But, paradoxically, statistical methods are often used to create a sense of certainty where none should exist. The social sciences have been rocked in recent years by highly publicized claims, published in top journals, that were reported as “statistically significant” but are implausible […]

## Let’s play Twister, let’s play Risk

Alex Terenin, Dan Simpson, and David Draper write: Some months ago we shared with you an arxiv draft of our paper, Asynchronous Distributed Gibbs Sampling. Through comments we’ve received, for which we’re highly grateful, we came to understand that (a) our convergence proof was wrong, and (b) we actually have two algorithms, one exact and […]

## Solving Statistics Problems Using Stan (my talk at the NYC chapter of the American Statistical Association)

Here’s the announcement: Solving Statistics Problems Using Stan Stan is a free and open-source probabilistic programming language and Bayesian inference engine. In this talk, we demonstrate the use of Stan for some small fun problems and then discuss some open problems in Stan and in Bayesian computation and Bayesian inference more generally. It’s next Tues, […]

## Bayesian Statistics Then and Now

I happened to recently reread this article of mine from 2010, and I absolutely love it. I don’t think it’s been read by many people—it was published as one of three discussions of an article by Brad Efron in Statistical Science—so I wanted to share it with you again here. This is the article where […]

## Hypothesis Testing is a Bad Idea (my talk at Warwick, England, 2pm Thurs 15 Sept)

This is the conference, and here’s my talk (will do Google hangout, just as with my recent talks in Bern, Strasbourg, etc): Hypothesis Testing is a Bad Idea Through a series of examples, we consider problems with classical hypothesis testing, whether performed using classical p-values or confidence intervals, Bayes factors, or Bayesian inference using noninformative […]

## Q: “Is A 50-State Poll As Good As 50 State Polls?” A: Use Mister P.

Jeff Lax points to this post from Nate Silver and asks for my thoughts. In his post, Nate talks about data quality issues of national and state polls. It’s a good discussion, but the one thing he unfortunately doesn’t talk about is multilevel regression and poststratification (or see here for more). What you want to […]

## Stan users group hits 2000 registrations

Of course, there are bound to be duplicate emails, dead emails, and people who picked up Stan, joined the list, and never came back. But still, that’s a lot of people who’ve expressed interest! It’s been an amazing ride that’s only going to get better as we learn more and continue to improve Stan’s speed […]

## Exploration vs. exploitation tradeoff

Alon Levy (link from Palko) looks into “Hyperloop, a loopy intercity rail transit idea proposed by Tesla Motors’ Elon Musk, an entrepreneur who hopes to make a living some day building cars,” and writes: There is a belief within American media that a successful person can succeed at anything. He (and it’s invariably he) is […]

## R demos for BDA3

Last year we published some Matlab/Octave and Python demos for BDA3. During the summer my student Markus Paasiniemi ported these demos to R. New R BDA3 demos are now available in github. We hope these are helpful for someone. They are now just R code, although R Markdown would be cool. Btw. we are expecting […]

## In Bayesian regression, it’s easy to account for measurement error

Mikhail Balyasin writes: I have come across this paper by Jacob Westfall and Tal Yarkoni, “Statistically Controlling for Confounding Constructs Is Harder than You Think.” I think it talks about very similar issues you raise on your blog, but in this case they advise to use SEM [structural equation models] to control for confounding constructs. […]