This post is by David K. Park As we have witnessed, the term “big data” has been thrusted onto the zeitgeist in the past several years, however, when one pushes beyond the hype, there seems to be little substance there. We’ve always had “data” so what so unique about it this time? Yes, we recognize it’s […]

**Causal Inference**category.

## Adjudicating between alternative interpretations of a statistical interaction?

Jacob Felson writes: Say we have a statistically significant interaction in non-experimental data between two continuous predictors, X and Z and it is unclear which variable is primarily a cause and which variable is primarily a moderator. One person might find it more plausible to think of X as a cause and Z as a […]

## References (with code) for Bayesian hierarchical (multilevel) modeling and structural equation modeling

A student writes: I am new to Bayesian methods. While I am reading your book, I have some questions for you. I am interested in doing Bayesian hierarchical (multi-level) linear regression (e.g., random-intercept model) and Bayesian structural equation modeling (SEM)—for causality. Do you happen to know if I could find some articles, where authors could […]

## New research journal on observational studies

Dylan Small writes: I am starting an observational studies journal that aims to publish papers on all aspects of observational studies, including study protocols for observational studies, methodologies for observational studies, descriptions of data sets for observational studies, software for observational studies and analyses of observational studies. One of the goals of the journal is […]

## In the best alternative histories, the real world is what’s ultimately real

This amusing-yet-so-true video directed by Eléonore Pourriat shows a sex-role-reversed world where women are in charge and men don’t get taken seriously. It’s convincing and affecting, but the twist that interests me comes at the end, when the real world returns. It’s really creepy. And this in turn reminds me of something we discussed here […]

## “Edlin’s rule” for routinely scaling down published estimates

A few months ago I reacted (see further discussion in comments here) to a recent study on early childhood intervention, in which researchers Paul Gertler, James Heckman, Rodrigo Pinto, Arianna Zanolini, Christel Vermeerch, Susan Walker, Susan M. Chang, and Sally Grantham-McGregor estimated that a particular intervention on young children had raised incomes on young adults […]

## My talks in Bristol this Wed and London this Thurs

1. Causality and statistical learning (Wed 12 Feb 2014, 16:00, at University of Bristol): Causal inference is central to the social and biomedical sciences. There are unresolved debates about the meaning of causality and the methods that should be used to measure it. As a statistician, I am trained to say that randomized experiments are […]

## Keli Liu and Xiao-Li Meng on Simpson’s paradox

XL sent me this paper, “A Fruitful Resolution to Simpson’s Paradox via Multi-Resolution Inference.” I told Keli and Xiao-Li that I wasn’t sure I fully understood the paper—as usual, XL is subtle and sophisticated, also I only get about half of his jokes—but I sent along these thoughts: 1. I do not think counterfactuals or […]

## Into the thicket of variation: More on the political orientations of parents of sons and daughters, and a return to the tradeoff between internal and external validity in design and interpretation of research studies

We recently considered a pair of studies that came out awhile ago involving children and political orientation: Andrew Oswald and Nattavudh Powdthavee found that, in Great Britain, parents of girls were more likely to support left-wing parties, compared to parents of boys. And, in the other direction, Dalton Conley and Emily Rauscher found with survey […]

## Postdoc with Liz Stuart on propensity score methods when the covariates are measured with error

Liz Stuart sends this one along: