Skip to content
Archive of posts filed under the Multilevel Modeling category.

Chicago alert: Mister P and Stan to be interviewed on WBEZ today (Fri) 3:15pm

Niala Boodho on the Afternoon Shift will be interviewing Yair and me about our age-period-cohort extravaganza which became widely-known after being featured in this cool interactive graph by Amanda Cox in the New York Times. And here’s the interview. The actual paper is called The Great Society, Reagan’s revolution, and generations of presidential voting and […]

“P.S. Is anyone working on hierarchical survival models?”

Someone who wishes to remain anonymous writes: I’m working on building a predictive model (not causal) of the onset of diabetes mellitus using electronic medical records from a semi-panel of HMO patients. The dependent variable is blood glucose level. The unit of analysis is the patient visit to a network doctor or hospitalization in a […]

Comment of the week

This one, from DominikM: Really great, the simple random intercept – random slope mixed model I did yesterday now runs at least an order of magnitude faster after installing RStan 2.3 this morning. You are doing an awesome job, thanks a lot!

Combining forecasts: Evidence on the relative accuracy of the simple average and Bayesian model averaging for predicting social science problems

Andreas Graefe sends along this paper (with Helmut Kuchenhoff, Veronika Stierle, and Bernhard Riedl) and writes: We summarize prior evidence from the field of economic forecasting and find that the simple average was more accurate than Bayesian model averaging in three of four studies; on average, the error of BMA was 6% higher than the […]

Spring forward, fall back, drop dead?

Antonio Rinaldi points me to a press release describing a recent paper by Amneet Sandhu, Milan Seth, and Hitinder Gurm, where I got the above graphs (sorry about the resolution, that’s the best I could do). Here’s the press release: Data from the largest study of its kind in the U.S. reveal a 25 percent […]

Regression and causality and variable ordering

Bill Harris wrote in with a question: David Hogg points out in one of his general articles on data modeling that regression assumptions require one to put the variable with the highest variance in the ‘y’ position and the variable you know best (lowest variance) in the ‘x’ position. As he points out, others speak […]

Identifying pathways for managing multiple disturbances to limit plant invasions

Andrew Tanentzap, William Lee, Adrian Monks, Kate Ladley, Peter Johnson, Geoffrey Rogers, Joy Comrie, Dean Clarke, and Ella Hayman write: We tested a multivariate hypothesis about the causal mechanisms underlying plant invasions in an ephemeral wetland in South Island, New Zealand to inform management of this biodiverse but globally imperilled habitat. . . . We […]

Bayesian nonparametric weighted sampling inference

Yajuan Si, Natesh Pillai, and I write: It has historically been a challenge to perform Bayesian inference in a design-based survey context. The present paper develops a Bayesian model for sampling inference using inverse-probability weights. We use a hierarchical approach in which we model the distribution of the weights of the nonsampled units in the […]

Big Data needs Big Model

Gary Marcus and Ernest Davis wrote this useful news article on the promise and limitations of “big data.” And let me add this related point: Big data are typically not random samples, hence the need for “big model” to map from sample to population. Here’s an example (with Wei Wang, David Rothschild, and Sharad Goel):

How much can we learn about individual-level causal claims from state-level correlations?

Hey, we all know the answer: “correlation does not imply causation”—but of course life is more complicated than that. As philosophers, economists, statisticians, and others have repeatedly noted, most of our information about the world is observational not experimental, yet we manage to draw causal conclusions all the time. Sure, some of these conclusions are […]