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Abstract. An effectively designed examination process goes far beyond revealing students’ knowl-

edge or skills. It also serves as a great teaching and learning tool, incentivizing the students to think

more deeply and to connect the dots at a higher level. This extends throughout the entire process:

pre-exam preparation, the exam itself, and the post-exam period (the aftermath or, more appro-

priately, afterstat of the exam). As in the publication process, the first submission is essential but

still just one piece in the dialogue.

Viewing the entire exam process as an extended dialogue between students and faculty, we discuss

ideas for making this dialogue induce more inspiration than perspiration, and thereby making it a

memorable deep-learning triumph rather than a wish-to-forget test-taking trauma. We illustrate

such a dialogue through a recently introduced course in the Harvard Statistics Department, Stat

399: Problem Solving in Statistics, and two recent Ph.D. qualifying examination problems (with

annotated solutions). The problems are examples of “nano-projects”: big picture questions split

into bite-sized pieces, fueling contemplation and conversation throughout the entire dialogue.

1. “Teach Us How to Prepare . . . ”: Stat 399 as a Conversation Opener

Over the more than half-century history of Harvard Statistics, the format of the Ph.D. Qualifying

Examination has varied considerably and repeatedly, from the two week “Sleepless in Seattle” exam

when one of us (XLM) was taking it in 1987 to the current format of a theoretical examination in

two 8-hour parts, and a 32-hour applied examination (all take-home). But one thing has remained

constant: there are no specific textbooks or courses around which the qualifying problems are

designed. Indeed, many problems are inspired by research projects of individual faculty members.

The underlying philosophy behind such problems is to require creativity and an ability to “con-

nect the dots,” recognize patterns, and see when a new problem is essentially equivalent to a

familiar problem. Such problems also provide a good opportunity for deeper learning, because they
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are “nano-research projects,” showcasing essentially all the whistles and bells needed for conduct-

ing research, albeit in miniature form. We have often heard anecdotes of a tendency for students

to drift after quals, a sort of “post-qual slump” (not entirely explainable by regression towards

the mean!). The nano-project process aims to make the transition from “pre-qual thinking” to

“post-qual thinking” more seamless and natural than formats where the exam is an isolated hurdle

to jump over, disconnected from the student’s development into a creative, precise thinker.

Understandably, students find it more difficult to prepare for such examinations than for those

based on a specific course or textbook. This is intentional! The qualifying exam process is meant

both to assess and to assist, emphasizing preparing for research rather than preparing for an exam.

The focus is on strategies and tactics for tackling new problems, rather than on memorizing facts

and formulas or trudging through tedious textbook-style problems.

A potential pitfall of this style of exam is that students may be confused about how to prepare

for an exam meant not to be prepared for, about how to create creativity, and about how to handle

the expected unexpected. This has sometimes led to excessive stress and mystery surrounding

the quals, with some students complaining beforehand that they didn’t know how to prepare, and

afterwards that the problems looked nothing like what they had seen in their courses.

Smullyan [5] recounts hearing the famous pianist Schnabel discussing reviewers:

I don’t read my reviews, at least not in America. The trouble with American

reviewers is that when they make a criticism, I don’t know what to do about it!

Now, in Europe it was different–for example, I once gave a concert in Berlin. The

critic wrote, ‘Schnabel played the first movement of the Brahms sonata too fast.’ I

thought about the matter and realized that the man was right! But I knew what

to do about it; I now simply play the movement a little slower. But when these

American critics say things like, ‘The trouble with Schnabel is that he doesn’t put

enough moonshine in his playing,’ then I simply don’t know what to do about it!

We would like our students to display both “moonshine” (which we take to mean creativity,

elegance, and a natural flow of ideas) and technical competence (so that creative ideas are backed

up by sound logic rather than hand-waving), but expecting a student to develop moonshine without

the right guidance can lead to much stress and confusion about how to prepare.

To help convert unpredictable unpredictability into predictable unpredictability, Stat 399: Prob-

lem Solving in Statistics was created. This is one of several recent pedagogical and professional

development innovations at Harvard Statistics resulting from promptly responding to students’

requests and concerns, as reported in Meng (2009).
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Stat 399 is a discussion-oriented, teamwork-based course. It has been led by Professor Carl Morris

(co-Director of Graduate Studies) since its inception in 2006-2007, with participation from 100% of

our faculty (each attending in different weeks). Typically, students select some previous qualifying

problems that they wish to study, and invite the faculty members who wrote the problems to join

the corresponding sessions. This gives students an inside look into the motivation, insights, and

techniques each faculty had in mind in designing his or her exam problems. Conversely, the faculty

can see firsthand how the students are thinking, individually and collectively, in a setting very

unlike a typical classroom. Stat 399 has also helped demystify the quals without devaluing them

or decreasing the difficulty, by making the exams more of a collaborative experience and opening

better lines of communication between students and faculty.

In such a course, a balance is needed between students sharing their thoughts on the problems

(preferably at the board) and faculty discussing strategy, background, etc. This depends on the

size and composition of the class, whether they seem stuck, and other factors, but in any case much

of the benefit requires the course to be discussion-based. A suggested format (with no claims of

optimality or uniqueness) for each meeting is as follows.

(1) Discussion of the background and motivation (some of which should already be in the

problem itself). Why might such a problem come up in a real research project? In short,

who cares? What is the big picture, both statistically and pedagogically?

(2) Students describe their ideas and approaches (having worked on the problem individually

ahead of time), asking questions and taking turns presenting at the board. The faculty

should keep the discussion on track and emphasize the logical flow between and within the

individual parts of the problem, and how they collectively represent a research process.

(3) Discussion of alternative solutions, and of how the problem connects to other problems the

students may have seen.

Students are expected to work hard on the problems individually before the meeting, and are

strongly encouraged to participate actively. Having students present solutions at the board is

informative for both students and faculty, as long as it is done interactively rather than as a mere

transcription of the student’s notes onto the board. The faculty member can also discuss how he

or she approached grading the question: what were the common mistakes, and what insights were

worth the most partial credit?

A course such as Stat 399 is particularly effective in tandem with “nano-project format” problems,

which we describe in more detail in the next section, followed in Sections 3-6 by two recent examples

with annotated solutions. These solutions interweave research and pedagogy, by containing both

solutions and notes on the pedagogical motivations of the exam. Section 7 discusses “afterstat”:
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the crucial importance of what happens after the exam. Lastly, in Section 8 we examine some

extensions and challenges, again emphasizing the exam as a process rather than a transient test,

and how nano-project problems benefit both the exam takers and the exam writers.

2. The Nano-Project Format

By “nano-project” problem, we mean a multi-part problem which can be thought of as a minia-

ture version of a real research project, well-motivated by a big picture question. Compared with

most problems, we believe that the nano-project format enhances the learning intensity and thus

can imprint memories far longer, provided that the problem is well-motivated, of an appropriate

level, and preceded and followed up suitably rather than treated as a fleeting experience.

Of course, countless exams have used multi-part formats, so why bother making up this new

name? Multi-part problems are used for many purposes, such as controlling the difficulty of the

problem (often inversely correlated with the number of parts, if parts serve as hints), saving space

by not having to redefine notation, etc. Our emphasis here is on the pedagogical advantages of

this format, and “nano-project” refers to the motivations for the format more than to the format

itself. Seeing many examples of how experienced researchers decompose a complicated problem

into manageable sub-problems is a crucial part of the deeper learning process needed to transform

students from homework/exam solvers to real-life problem solvers.

Indeed, most parts are designed in such a way that if a student cannot complete a particular part,

he or she can still move forward by using the results from that part, much like in research where

we sometimes use established results without necessarily knowing how to rigorously establish them

ourselves. If the earlier part asks the student to calculate the value of a quantity c, then often the

student can be allowed to leave the later parts in terms of the symbol c (and the problem should be

designed to facilitate this). If the earlier part is of the form “Prove assertion A,” then the student

can simply assume that assertion A is true in the later parts. If the earlier part is of the form

“Prove assertion A or give a counterexample,” this becomes harder, but this wording is closer to

real-life problems, where we often have to iterate back and forth between making conjectures and

finding counterexamples. This kind of iterative thinking is well-reflected in the nano-project format.

Indeed, we can often design the problem so that later parts serve as hints to earlier part, with the

later part yielding a contradiction if the earlier part was answered incorrectly. This reminds the

student to consider the parts as a coherent project rather than isolated parts.

Students should also be reminded that the order of parts for such nano-project problems corre-

sponds to a logical flow of ideas rather than a flow of increasing difficulty, because students often

assume that the later parts will be harder than the earlier parts. A tradeoff arises here too, in

deciding the number of parts. Too many parts can make it harder to see the big picture and can
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result in each part being a trivial verification; but with too few parts, most students could have

too little guidance, though some of the best students would still learn much from finding their own

approaches to breaking the problem into simpler parts. Deciding how many parts to give is helped

well by knowing the students well, which is again a major advantage of a course such as Stat 399.

Some multi-part problems appear to have been generated by taking a long proof of some result,

extruding the abstract mathematical core, and then converting this to a long list of statements

to verify. Students often then do each verification but miss the big picture, seeing neither the

purpose of the verifications nor the strategies that suggested breaking the proof into those steps in

the first place. Thus, in designing a nano-project problem, it is very important that the parts be

well-motivated, both within each part and in the connections between parts. Whereas such a task

might seem to require a delicate balancing act, our experiences are that if the problem is based on

an actual research project, particularly a current one, then it is rather straightforward because it

merely reflects our own thought process (unless, of course, we have very muddy ones ourselves!).

Often one of the most important roles of a statistician collaborating or consulting with others is

to bring clarity to the framing of research questions. The nano-project format helps emphasize the

importance of starting with a clear, well-motivated big picture question, and then decomposing it

into smaller but equally clear questions.

We turn next to two specific examples, one from each of the last two years of qualifying exams in

the Harvard Statistics Department. The two problems illustrate the features and flexibility of the

nano-project format. The first has four parts, focusing on an interval estimation problem with a

constraint on the parameter space, while the second has eight parts, investigating a recent proposal

for achieving automated bias-variance trade-off. Both are from the theoretical exam, with students

having 8 hours to solve 3 problems on each of 2 days. For space reasons, we do not discuss the

applied exam here, but we believe the nano format is also very effective in that context, and that

nano-problems interweaving theoretical and applied parts can also be fruitfully developed.

We also provide the actual annotated solutions, as prepared for Stat 399. We do not claim that

these solutions are the best possible (but we do hope they are almost surely correct!). Quite to the

contrary, we encourage our students in Stat 399 to come up with better ones, which also mirrors

real-world research: improving upon existing methods and solutions is part of the game.

3. An Actual Ph.D. Qualifying Exam Problem (Harvard Statistics, Blitzstein 2008)

Confidence intervals or probability intervals are required for the mean µ, based on observing Normal

data y ∼ N (µ, σ2), where for simplicity σ2 is assumed known. In the application of interest, it is
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physically impossible for µ to be negative, e.g., µ represents a length or mass. So the parameter

space is taken to be [0,∞).

Note that negative values of y are still possible (e.g., due to measurement error). For example,

many early attempts to measure the squared mass of the neutrino resulted in negative estimates.

(a) Arguing that it is absurd to include negative values in a confidence interval for µ, Statistician A

proposes taking the usual 95% CI I0 = [y−1.96σ, y+1.96σ] and truncating the interval to eliminate

any negative values, i.e., using I1 = I0 ∩ [0,∞). Is this still a 95% CI in the frequentist sense? Is

the corresponding upper limit of the interval a one-sided 97.5% upper bound? What about the

lower bound?

(b) Determine whether there is a prior π for µ such that the Bayesian posterior interval is the same

as I1 from (a) (for all possible data).

(c) Choosing an Exponential prior for µ, with rate parameter λ > 0 (known), find a 95% Bayesian

posterior interval for µ (simplify; you may either give a central interval (cutting out 2.5% in each

tail) or an HPD (highest posterior density) interval).

(d) Suppose now that we are only interested in an upper bound for µ and so want to give the “best”

possible interval of the form [0, a], where instead of pre-specifying a desired coverage probability, we

try to minimize the posterior loss with respect to the following loss function L(µ, I), where µ ≥ 0

and I is an interval.

Define L(µ, I) to be 1 if µ /∈ I, and L(µ, I) = 1 − e−|I| otherwise, where |I| is the length of the

interval I. This penalizes an interval for not containing µ; given that the interval does contain µ,

it rewards shorter intervals. Assume that the posterior distribution for µ is Exponential with rate

parameter λ. Find (explicitly) the best interval [0, a].

4. Annotated Solution to the Blitzstein 2008 Problem

(a) This part tests familiarity with confidence intervals and coverage probabilities in a setting un-

familiar to most students (yet still natural), as well as a general level of carefulness–despite the

seeming simplicity, it is easy to make a serious mistake in this part. The solution is almost imme-

diate if approached as below, but almost all the students taking the actual exam made it much more

complicated, trying various approaches and often running into trouble.

The coverage probability of I1 is identical to that of I0 since

(4.1) P (µ ∈ I1) = P (µ ∈ I0 ∩ [0,∞)) = P (µ ∈ I0, µ ∈ [0,∞)) = P (µ ∈ I0).
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This simple one-line proof illustrates the power of looking for the essence of a problem, and using

mathematical notation effectively to reflect that essence. Written this way, the fact that the coverage

probability does not change is immediate from the definition of intersection; most students tried

breaking the problem into several cases and finding other formulas for I1, more “explicit” in some

sense but more complicated to handle. Note also that this argument can easily be extended to

other distributions on y and other constraints on the parameter.

For the one-sided parts, a convention is needed for how to account for the fact that the “interval”

I1 may be empty, in which case the upper and lower limits are undefined (part of the point here

was to check whether students would carefully handle details such as this: the fact that the interval

may be trivial is non-trivial to deal with!). Let us take the convention that we will use −∞ as the

upper bound and ∞ as the lower bound when I1 is empty (this is consistent with the standard

convention that the supremum of the empty set is −∞ and the infimum is ∞, which is of course

the only case where the infimum of a set exceeds its supremum!).

Then we will check that the upper bound retains the same coverage as in the unrestricted

parameter space case, while the lower bound coverage decreases. This is rather surprising: if the

two-sided coverage is preserved and the upper bound coverage is preserved, doesn’t it follow that

the lower bound coverage is preserved? The explanation is that in the case that I1 is empty, both

one-sided bounds fail and so there is overlap in the two types of non-coverage. That is, because

(4.2) P (interval fails) = P (upper limit fails) + P (lower limit fails)− P (both limits fail) = 0.05,

we have that P (upper limit fails) = 0.025 implies P (lower limit fails) > 0.025.

To check the upper limit, express the upper limit U1 as y + 1.96σ if y + 1.96σ ≥ 0, and −∞

otherwise. Then

(4.3) P (µ ≤ U1) = P (µ ≤ y + 1.96σ, y + 1.96σ ≥ 0) = P (µ ≤ y + 1.96σ),

so the coverage probability is identical to that in the unrestricted parameter space case.

To check the lower limit, express the lower limit L1 as max(y − 1.96σ, 0) if y + 1.96σ ≥ 0, and

∞ otherwise. Then

(4.4) P (µ ≥ L1) = P (y − 1.96σ ≤ µ, 0 ≤ µ, y + 1.96σ ≥ 0) = P (−1.96σ ≤ y ≤ µ+ 1.96σ),

which is strictly less than P (µ ≥ y − 1.96σ), the coverage probability for the unrestricted µ case.

(b) This part contrasts the confidence intervals encountered in (a) with the intervals obtained from a

Bayesian perspective, and is a counterexample to the saying “you can’t prove a negative!” It is again

almost immediate if one thinks about the fact that the confidence intervals in (a) can be empty, but
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some students tried writing down explicit priors and again doing messy calculations (and of course

they could not try all possible priors in this way).

It is not possible that there is such a prior, since the confidence interval I1 is empty with

positive probability. The absurdity of reporting an empty confidence interval is technically legal

in the frequentist sense, but a posterior interval can’t be empty. Putting a prior on µ allows us to

directly use the constraint on µ (by giving prior probability 0 to µ < 0), and the posterior interval

automatically incorporates this information.

(c) This part tests basic comfort with computing a posterior distribution in a case where this can

be done explicitly; it is made much cleaner if the student knows that he or she can ignore constant

factors in the likelihood function and is able to recognize a truncated Normal distribution.

By multiplying likelihood times prior and ignoring some constant factors, we have

(4.5) π(µ|y) ∝ exp

(
−(y − µ)2

2σ2
− λµ

)
I(µ ≥ 0),

where I(µ ≥ 0) is the indicator of µ ≥ 0 (a common and disastrous mistake is to forget to include

the constraint on µ; students need to be reminded to be careful about the ranges of possible values).

Completing the square, we have

(4.6) π(µ|y) ∝ exp

(
−
(
µ− (y − σ2λ)

)2
2σ2

)
I(µ ≥ 0),

which we recognize as a truncated Normal distribution. That is, µ|y is distributed as the conditional

distribution of W given W ≥ 0, where W ∼ N (m,σ2) with m = y − σ2λ. A 95% interval for µ is

thus any interval (a, b) with P (a ≤ W ≤ b|W ≥ 0) = 0.95. Taking a ≥ 0, the lefthand side can be

evaluated explicitly in terms of the standard Normal CDF Φ by

(4.7) P (a ≤W ≤ b|W ≥ 0) =
P (a ≤W ≤ b)
P (W ≥ 0)

=
Φ( b−mσ )− Φ(a−mσ )

Φ(mσ )
.

(d) This part tests basic understanding of posterior loss, in a somewhat unusual setting where the

loss function measures loss from providing an interval rather than from providing a point estimate.

To simplify the calculations because of time constraints, the posterior distribution was assumed to

take a very simple form here.

We wish to minimize

P (µ /∈ I) + (1− e−|I|)P (µ ∈ I) = e−λa + (1− e−a)(1− e−λa) = bλ+1 − b+ 1,

where I is the interval [0, a] and b = e−a. By basic calculus, there is a unique minimum at

b = ( 1
λ+1)1/λ (the student should check that there is a unique minimum there, not just that the
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derivative is 0 there!). This corresponds to

(4.8) a = − log b =
log(λ+ 1)

λ
.

5. An Actual Ph.D. Qualifying Exam Problem (Harvard Statistics, Meng 2009)

During a recent departmental seminar, our speaker made an assertion along the following lines:

“I have two estimators, β̂ and β̂0 for the same parameter β. The former is more robust because

it is derived under a more general model, and the second is more efficient because it is obtained

assuming a more restrictive model. The following is a compromise between the two:

(5.1) β̂c =
(β̂ − β̂0)2

V̂(β̂) + (β̂ − β̂0)2
β̂ +

V̂(β̂)

V̂(β̂) + (β̂ − β̂0)2
β̂0,

where V̂(β̂) is a consistent estimate of the variance of β̂. This should work better because when the

more restrictive model is true, β̂c tends to give more weight to the more efficient β̂0, and at the

same time, β̂c remains consistent because asymptotically it is the same as β̂.”

As some of you might recall, I was both intrigued by and skeptical about this assertion. This

problem asks you to help me to understand and investigate the speaker’s assertion. To do so, let’s

first formalize the meaning of a general model and a more restrictive one.

Suppose we have i.i.d. data ~Y = {y1, . . . , yn} from a model f(y|θ), where θ = {α, β}, both of

which are scalar quantities, with β the parameter of interest, α the nuisance parameter, and the

meaning of β does not depend on the value of α. Suppose the restrictive model takes the form

f0(y|β) = f(y|α = 0, β), i.e., under the restrictive model we know the true value of α is zero. Let

θ̂ = {α̂, β̂} be a consistent estimator of θ under the general model f(y|θ), and let β̂0 be a consistent

estimator of β0, which is guaranteed to be β only when the restrictive model f0(y|β) holds. We

further assume all the necessary regularity conditions to guarantee their joint asymptotic normality,

that is,

(5.2)
√
n

[(
θ̂

β̂0

)
−
(

θ
β0

)]
→ N

((
0
0

)
,Σ =

(
Σθ CT

C σ2
β0

))
.

For simplicity of derivation, we will assume Σ ≥ 0 (i.e., a semi-positive definite matrix) is known,

and the convergence in (5.2) is in the L2 sense (i.e., Xn → X means limn→∞E||Xn −X||2 = 0).

(A) The speaker clearly was considering a variance-bias trade-off, assuming that β̂0 is more ef-

ficient than β̂ when the more restrictive model is true. Under the setup above, prove this is true

asymptotically when θ̂ and β̂0 are maximum likelihood estimators (MLE, as in the superscript be-

low) under the general model and restrictive model respectively and when we use the Mean-Squared

Error (MSE) criterion (we can then assume Σθ and σ2
β are given by the inverse of the corresponding

Fisher information). That is, prove that if the restrictive model holds, the (asymptotic) relative
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efficiency (RE) of β̂0 to that of β̂ is no less than 1:

(5.3) RE ≡ lim
n→∞

E[β̂MLE − β]2

E[β̂MLE
0 − β]2

≥ 1,

and give a necessary and sufficient condition for equality to hold. Provide an intuitive statistical

explanation of this result, including the condition for equality to hold.

(B) Give a counterexample to show that (5.3) no longer holds if we drop the MLE requirement.

What is the key implication of this result on the speaker’s desire to improve β̂ via β̂0?

(C) Since we assume Σ is known, we can replace V̂(β̂) in (5.1) by σ2
β/n, where σ2

β is an appropriate

entry of Σθ. We can therefore re-express (5.1) as

(5.4) β̂c = (1−Wn)β̂ +Wnβ̂0, where Wn =
σ2
β

σ2
β + n(β̂ − β̂0)2

.

Prove that, under our basic setup (5.2), limn→∞E(Wn) = 0 if and only if β 6= β0.

(D) Using Part (C) to prove that whenever β 6= β0,

(5.5) lim
n→∞

E[β̂c − β]2

E[β̂ − β]2
= 1.

Which aspect of the speaker’s assertion does this result help to establish?

(E) To show that the condition β 6= β0 cannot be dropped in Part (D), let us consider that our

data {y1, . . . , yn} are i.i.d. samples from the following bivariate normal model:

(5.6) Y =

(
X
Z

)
∼ N

((
α
β

)
,

(
1 ρ
ρ 1

))
,

where ρ is known. Show that under this model, when we use MLEs for β̂ and β̂0,
√
n(β̂c − β) has

exactly the same distribution as

(5.7) ξ = Z0 − ρ(X0 +
√
nα)W̃n = (Z0 − ρX0) + ρ[(1− W̃n)X0 − W̃n

√
nα],

where (X0, Z0)> has the same distribution as in (5.6) but with both α and β set to zero, and

W̃n ≡ W̃n(ρ, α) =
1

1 + ρ2(X0 +
√
nα)2

.

Use the right-most expression in (5.7) to then show that

(5.8) nE[β̂c − β]2 = 1− ρ2 + ρ2Gn(ρ, α),

where

(5.9) Gn(ρ, α) = E[(1− W̃n(ρ, α))X0 − W̃n(ρ, α)
√
nα]2.

(F) Continuing the setting of Part (E), use (5.8) to prove that when α = 0, for all n,

(5.10) E[β̂MLE
0 − β]2 < E[β̂c − β]2 < E[β̂MLE − β]2,
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as long as ρ 6= 0. Why does this result imply that β 6= β0 cannot be dropped in Part (D)? What

happens when ρ = 0?

(G) Still under the setting of Parts (E) and (F), verify that Gn(0, α) = nα2, and then use this

fact to prove that as long as nα2 > 1, there exists a ρ∗n,α > 0 such that for all 0 < |ρ| < ρ∗n,α,

(5.11) nE[β̂c − β]2 > 1 = nE[β̂MLE − β]2.

Does this contradict Part (D)? Why or why not?

(H) What do all the results above tell you about the speaker’s proposed estimator β̂c? Does it

have the desired property as the speaker hoped for? Would you or when would you recommend it?

Give reasons for any conclusion you draw.

6. Annotated Solution to the Meng 2009 Problem

(A) This part tests a student’s understanding of the most basic theory of likelihood inference, espe-

cially the calculation of Fisher information, and the fact that the MLE approach is efficient/coherent

in the sense that when more assumptions are made its efficiency is guaranteed to be non-decreasing.

The result (5.3) is easily established using the fact that if we write the expected Fisher information

under the general model (with n = 1) as

(6.1) I(θ) =

(
iαα iαβ
iαβ iββ

)
, and notationally I−1(θ) =

(
iαα iαβ

iαβ iββ

)
,

then iββ = [iββ − i2αβi−1
αα]−1. The Fisher information under the restrictive model of course is given

by iββ with α = 0. Consequently, under our basic setup, when α = 0,

(6.2) RE =
iββ

i−1
ββ

=

[
1−

i2αβ
iααiββ

]−1

≥ 1,

where equality holds if and only if iαβ = 0 when α = 0, that is, when β and α are orthogonal

(asymptotically) under the restrictive model. Intuitively, the gain of efficiency of β̂MLE
0 over β̂MLE

is due to β̂MLE’s covariance adjustment via α̂MLE − α when α = 0. However, this adjustment can

take place if and only if β̂MLE is correlated with α̂MLE when α = 0, which is the same as iαβ 6= 0.

(B) This part in a sense is completely trivial, but it carries an important message. That is, the

common notation/intuition that “the more information (e.g., via model assumptions) or the more

data, the more efficiency” can be true only when the procedure we use processes information/data

in an efficient way (e.g., as with MLE).

There are many trivial and “absurd” counterexamples. For example, in Part (A), if we use the

same MLE under the general model, but only use 1/2 our samples when applying the MLE under
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the restrictive model, then the RE ratio in (6.2) obviously will be deflated by a factor of 2, and

hence it can easily be made to be less than 1.

[A much less trivial or absurd example is when we want to estimate the correlation parameter ρ

with bivariate normal data {(xi, yi), i = 1, . . . , n}. Without making any restriction on other model

parameters, we know the sample correlation is asymptotically efficient with asymptotic variance

(1−ρ2)2/n (see Chapter 8 of Ferguson 1996). Now suppose our restrictive model is that both X and

Y have mean 0 and variance 1. The Fisher information for this restrictive model is (1+ρ2)/(1−ρ2)2,

therefore RE = 1 + ρ2 ≥ 1, which confirms Part (A).

However, since E(XY ) = ρ under the restrictive model, someone might be tempted to use the

obvious moment estimator r̂n =
∑

i xiyi/n for ρ. But one can easily calculate that the variance

(and hence MSE) of r̂n is (1 + ρ2)/n for any n. Consequently, the RE of r̂n compared to the

sample correlation is (asymptotically) (1− ρ2)2/(1 + ρ2), which is always less than 1 and actually

approaches 0 when ρ2 approaches 1.

So the additional assumption can hurt tremendously if one is not using an efficient estimator!

(A qualifying exam problem from a previous year also dealt with this.) Moment estimators are

used frequently in practice because of their simplicity and robustness (to model assumptions), but

this example shows that one must exercise great caution when using moment estimators, especially

when making claims about their relative efficiency when adding assumptions or data.]

(C) Intuitively this result is obvious, because when β 6= β0, the denominator in Wn can be made

arbitrarily large as n increases, and hence its expectation should go to zero. But this part tests a stu-

dent’s ability to make such “hand-waving” arguments rigorous without invoking excessive technical

details, which is an essential skill for theoretical research.

Let ∆n =
√
n(β̂ − β̂0 − δ), where δ = β − β0. Then by (5.2), ∆n converges in L2 to N(0, τ2),

where τ2 = a>Σa, with a = (0, 1,−1)>. Therefore, there exists an n0 such that for all n ≥ n0,

V(∆n) ≤ 2τ2. Consequently, for any ε > 0, if we let Mε =
√

2τ2/ε and An = {|∆n| ≥ Mε}, then

by Chebyshev’s inequality, we have

(6.3) Pr(An) = Pr(|∆n| ≥Mε) ≤
V(∆n)

M2
ε

≤ ε.

Now if δ 6= 0, then as long as n ≥M2
ε /δ

2, we have, noting 0 < Wn =
σ2
β

σ2
β+(∆n+

√
nδ)2
≤ 1,

(6.4) 0 ≤ E(Wn) = E(Wn1An) + E(Wn1Acn) ≤ Pr(An) +
σ2
β

σ2
β + (

√
n|δ| −Mε)2

,

where in deriving the last inequality we have used the fact that (u + v)2 ≥ (|u| − |v|)2. That

E(Wn) → 0 then follows from (6.3) and (6.4) by first letting n → ∞ in (6.4), and then letting

ε→ 0 in (6.3).
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To prove the converse, we note that when δ = 0, Wn =
σ2
β

σ2
β+∆2

n
. Therefore, by Jensen’s inequality

E(X−1) ≥ [E(X)]−1, we have

E(Wn) ≥
σ2
β

σ2
β + E(∆2

n)
→

σ2
β

σ2
β + τ2

> 0.

(D) This part is rather straightforward, as long as the student is familiar with the Cauchy-Schwarz

inequality (which is a must!).

From (5.4), we have
√
n(β̂c− β) =

√
n(β̂− β)−WnDn, where Dn =

√
n(β̂− β̂0). It follows then

(6.5) nE(β̂c − β)2 = nE(β̂ − β)2 + E(W 2
nD

2
n)− 2E[

√
n(β̂ − β)(WnDn)].

Under our assumptions, the first term on the right hand side of (6.5) converges to σ2
β > 0, so

(5.5) follows if we can establish that the second term on the right hand side of (6.5) converges to 0.

This is because, by the Cauchy-Schwarz inequality, the third term on the right hand side of (6.5)

is bounded above in magnitude by 2

√
nE(β̂ − β)2E(W 2

nD
2
n), and hence it must then converge to

0 as well if the second term does so. But by the definition of Wn in (5.4),

(6.6) E(W 2
nD

2
n) = E

[
Wn

σ2
βD

2
n

σ2
β +D2

n

]
≤ σ2

βE(Wn),

which converges to 0 by Part (C) when δ = β − β0 6= 0. The implication of this result is that

the speaker’s assertion that β̂c is asymptotically the sane as β̂ is correct, as long as β 6= β0. [Note

that there is a subtle difference between β = β0 and α = 0. The latter implies the former, but the

reverse may not be true because one can always choose β̂0 to be β̂ even if the restrictive model is

not true.]

(E) This part tests a student’s understanding of multivariate normal models and the basic regres-

sion concepts, with which one can complete this part without any tedious algebra.

The most important first step is to recognize/realize that under the general model, β̂MLE = Z̄n,

and under the restrictive model, β̂MLE
0 = Z̄n − ρX̄n, where X̄n and Z̄n are the sample averages;

hence Dn = ρ
√
nX̄n. The first expression in (5.7) then follows from (5.4) when we re-write it as

β̂c = Z̄n−Wn(ρX̄n) and let X0 =
√
n(X̄n−α) and Z0 =

√
n(Z̄n−β), and the fact that (X0, Z0) has

the same bivariate normal distribution as in (5.6) but with zero means. The second expression is

there to hint at the independence of the two terms, because the first term (Z0−ρX0) is the residual

after regressing out X0, and the second term is a function of X0 only. With this observation, (5.8)

follows immediately because the residual variance is 1− ρ2.

(F) Again, this part does not require any algebra if a student understands the most basic calcula-

tions with bivariate normal and regression. When α = 0, W̃n(ρ, 0) = 1
1+ρ2X2

0
, and
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(6.7) Gn(ρ, 0) = E[X0(1− W̃n(ρ, 0))]2 = E

[
X2

0

(
ρ2X2

0

1 + ρ2X2
0

)2
]
≡ Cρ,

where the constant Cρ > 0 is free of n and it is clearly less than E(X2
0 ) = 1. Therefore the

identity (5.8) immediately leads to nE[β̂c − β]2 = 1 − (1 − Cρ)ρ
2, which is strictly larger than

nE[β̂MLE
0 − β]2 = 1 − ρ2 and smaller than nE[β̂MLE − β]2 = 1, as long as ρ 6= 0. Clearly in this

case (5.5) of Part (D) will not hold because the ratio there will be 1 − (1 − Cρ)ρ2 < 1, hence the

condition β 6= β0 cannot be dropped in Part (D) – note when ρ 6= 0, β 6= β0 is equivalent to α 6= 0.

When ρ = 0, β̂MLE = β̂MLE
0 , and hence regardless of the value of α, Part (D) holds trivially even

though the condition β 6= β0 is violated. This also provides another (trivial) example that β = β0

does not imply α = 0, as we discussed at the end of the solution to Part (D) above.

(G) This part demonstrates the need for some basic mathematical skills in order to derive impor-

tant statistical results (that cannot be just “hand-waved”!).

When ρ = 0, W̃n(0, α) = 1, and hence Gn(0, α) = nα2. From its expression (5.9), the (random)

function under expectation is continuous in ρ and bounded above by X2
0 +nα2, which has expecta-

tion 1+nα2. Hence, by the Dominated Convergence Theorem, Gn(ρ, α) is a continuous function of

ρ for any given α and n. Consequently, whenever Gn(0, α) = nα2 > 1, there must exist a ρ∗n,α > 0,

such that for any |ρ| ≤ ρ∗n,α, Gn(ρ, α) > 1 as well. It follows then, when 0 < |ρ| ≤ ρ∗n,α, that from

(5.8),

(6.8) nE[β̂c − β]2 = 1− ρ2 + ρ2Gn(ρ, α) > 1− ρ2 + ρ2 = 1 = nE[β̂MLE − β]2.

Inequality (6.8), however, does not contradict Part (D) because the choice of ρ∗n,α depends on n,

so Part (D) implies that as n increases, ρ∗n,α → 0.

(H) Parts (A) and (B) demonstrate that in order for the proposed estimator (5.1) to achieve the

desired compromise, a minimal requirement is that there should be some “efficiency” requirement

on the estimation procedures, especially the one under the more restrictive model. Otherwise it

would not be wise in general to bring in β̂0 to contaminate an already more efficient and more

robust estimator β̂.

Parts (C) and (D) proved that under quite mild conditions, the proposed β̂c is equivalent asymp-

totically to the estimator under the general model, as long as the estimator under the more re-

strictive model is asymptotically biased, that is, as long as β0 6= β. So in that sense the speaker’s

proposal is not harmful but not helpful either asymptotically, and therefore any possible improve-

ment must be a finite-sample one (which apparently is what the speaker intended and indeed the

only possible way if one uses MLE to start with).
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Parts (E)-(G) give an example to show that when the restrictive model is true, the speaker’s

proposal can achieve the desired compromise, that is, β̂c beats β̂MLE in terms of MSE for all n,

but it is not as good as β̂MLE
0 . The latter is not surprising at all because in this case β̂MLE

0 is the

most efficient estimator (asymptotically, but also in finite sample given its asymptotic variance is

also the exact variance).

However, when the restrictive model is not true, there is no longer any guarantee that β̂c will

dominate β̂ (indeed this is not possible in general whenever β̂ is admissible). The result in Part (G)

also hinted that in order for β̂c to beat β̂, the “regression effect” of β̂ on α̂ must be strong enough

(e.g., expressed in this case via |ρ| > ρ∗n,α) in order to have enough borrowed efficiency from β̂0 to

make it happen.

In summary, the speaker’s proposal can provide the desired compromise when the restricted

model is close to being true and the original two estimators are efficient in their own right, but it

cannot achieve this unconditionally. In general, it is not clear at all when one should use such a

procedure, especially when the original two estimators are not efficient to start with.

7. Afterstat

The post-exam phase, which we call afterstat rather than aftermath, is also an integral part of

the dialogue. Of course, there is a natural tendency for students to be concerned mainly about their

grades (and whether they passed), but the clearer the relevance of the exam is to their research,

the more they will care about understanding the problems deeply. In order for the afterstat to

reinforce and enhance the learning from the exam, we suggest the following.

(1) Allow and encourage students to keep copies of the questions immediately after the exam,

so that it is easier for them to discuss the problems with each other and think more about

them. After the grading is done, let students have their exams back (or copies, if the

originals need to be retained).

(2) The grading scheme can itself mirror research progress (with a lot of partial credit given for

insights that would be useful in the corresponding research problem). Solving a special case

(often by looking at simple and extreme cases) is an extremely valuable strategy and often

is itself substantial progress, and this can be reflected in the grading, letting the students

know in advance that substantial partial credit is often available for solving an insightful

special case. Checking answers, solving the problem in more than one way, and giving clear

intuitive explanations in addition to mathematical derivations should all be rewarded.

(3) Encourage the students to do a systematic, honest self-diagnosis after they see their graded

exams. There is a tendency for students to exaggerate how much was due to “just careless
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mistakes” when in fact with a stronger understanding of the material, many of the mistakes

would be less likely to be made and (if made) more likely to be detected.

(4) Require students to submit rewrites of problems on which they made mistakes, and even

for problems on which they received full credit but did the problem in a long, brute force

method when they could have had a lot more moonshine. At Harvard, most Ph.D. students

end up rewriting at least one qual problem, interacting one-on-one with the appropriate

faculty, and sometimes going through several iterations on each. Students often learn a lot

from this extension of the dialogue, and from revisiting problems rather than blotting them

out of their memories. A recent student wrote the following about the rewrite process (and

many other students have expressed similar sentiments):

I’m also glad I’ve been given the opportunity to rewrite all questions . . . It’s going

to make me a better statistician for sure. Rewriting is definitely a worthwhile

exercise, looking back at some of my first solutions, I can see the obvious errors

and gaps. Now I can think long and hard about these problems and try and come

up with different ways to attack them. It’s great.

When little emphasis is placed on the afterstat, an exam often goes in one ear and out the other.

The additional effort required for revisiting exams in this way, and for carefully grading in a way

that reflects the nano-project goals, is amply rewarded by improved understanding and retention

of the key ideas. Sequels to Stat 399 can further fortify and extend what the students have learned,

e.g., we recently taught a short course on how to nurture a research idea into a publication. The

Visiting Committee in 2010, consisting of six statisticians appointed to evaluate the department,

observed a marked improvement in several graduate education issues reported by the previous

(2006) Visiting Committee, noting that “the new courses 303 (The Art and Practice of Teaching),

399 (Problem Solving in Statistics), and 366 (Research Cultivation and Culmination) have relieved

unnecessary anxiety over teaching, qualifying exams, and research.”

Indeed, our proposed exam process provides the students a “nano taste” of the research publica-

tion process. Few submitted papers are accepted as is without any need for revisions, and likewise

for quals it is expected that revisions will be needed for most students. (Also like paper submissions,

there will be exam submissions that are too low in quality to be revisable, and therefore must be

rejected; the students who fail the exam often have a second and final chance.) The analogy to

the publication process also carries through to the grading. Faculty who grade the exams should

provide “reviewer’s comments”: rather than providing answers, they should raise important issues,

point out any gaps and mistakes, and make both general and specific comments. In both cases, the

first submission is just part of the process, important but still just one piece in the dialogue.
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8. Extensions and Challenges

Real-life research projects can be used to develop an essentially unlimited number of examination

problems like those above. In addition to the other advantages discussed earlier, such problems

help make the qualifying exam process feel to students like an essential learning experience rather

than an arbitrary hoop to jump through, disconnected from their future research. For problems

inspired by a seminar talk (such as the Meng 2009 problem), a further advantage is in providing

students with an extra incentive to attend seminars!

The above problems were designed for take-home Ph.D.-level exams, but similar design goals

can be applied to many other levels and settings (even for homework problems, not just exams). A

take-home exam is not always feasible due to the possibility of cheating or finding answers online,

but the key message—that a carefully designed examination process is an intensified deeper learning

opportunity—remains the same in many other situations. For example, here are several variations

for the Meng 2009 problem, suitable for different settings yet each with a deeper-learning aim.

For an in-class examination for a statistical modeling course, we can focus on the theme under-

lying Parts (A)-(B) only, with questions such as:

(1) Does knowing more about a model always lead to a better estimator or test?

(2) How does one quantify knowing more, better, and their relationship?

Or for a statistical theory course, we can provide students with the annotated solution from

Section 6 and ask them to write an essay (as part of a take-home exam) on what the statistical

questions all these formulas intend to address are, and:

(3) Are there other/better ways to answer the same questions?

(4) What are some concrete examples of such tradeoffs between robustness and efficiency?

(5) How can one convey the summaries in Part (H) to someone who is interested in using (5.1) but

is not equipped to digest the technical details in other parts?

For some more mathematically-oriented students, we can even imagine engaging them by asking

them to check whether there is any error or non-rigorous derivation in the annotated solution in

Section 6, and if so to provide corrections/modifications. (Mistakes, especially the subtle ones, are

another excellent source for deeper learning). We can then entice them to think about how their

beautiful mathematics helps to answer the underlying statistical/scientific questions.

There are also computer-based variations, where the students can simulate the performance of

the estimators under different conditions; indeed, computationally intensive problems can very

naturally be put in the nano-project format. But of course when programming is required, the

problem is only suitable for take-home exams, and the exam writer must be mindful of the large

variation in students’ abilities in programming and debugging.
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Lest anyone complain about the intensified difficulty of coming up with such problems in the

first place, we would like to emphasize that the “intensified dialogue” directly benefits the exam

writer in ways that go beyond the pedagogical advantages. Indeed, we have learned a great deal

from preparing qualifying exam problems and commenting on problems proposed by other fac-

ulty. For example, studying Mukherjee and Chatterjee’s (2008) proposal while designing the Meng

2009 problem revealed a misleading insight in gene-environment interaction studies and a partial

shrinkage phenomenon of partially Bayes methods, resulting in a full research article (Meng 2010).

The health of such an exam process relies heavily on having strong support from the faculty.

What if, despite the benefits described above, not many faculty are willing to take the time to

design such problems? Here again the view that Stat 399, the exam itself, and the afterstat are an

inseparable process is helpful. Visiting such a course, it becomes palpably clear that a well-designed

problem is fun and insightful for everyone to discuss, with benefits extending over many years as

the problem can be discussed for years to come. The more faculty who participate, the more a

sense of teamwork evolves, improving many types of communication and helping convince the rest

of the faculty that this effort is worthwhile. That is, this exam process also enhances the dialogues

among faculty, learning from each other both research insights and pedagogical ideas.

Many of us understand well that the ideal scholarship consists of excellence in both research

and pedagogy; our limited experiences suggest that a course such as Stat 399, combined with

nano-project problems and a thoughtful afterstat, forms an effective exam process and a constant

reminder to both students and faculty of the importance of interweaving research and pedagogy.

Without being able to experiment on students, it is challenging to show definitively that our

suggested process better prepares students for research than more “textbook-style” approaches;

we hope to obtain empirical evidence to support or make us re-evaluate the anecdotal evidence

and pedagogical principles we currently have available. We would welcome hearing about the

experiences of others in making the exam process both predictive and productive, and seeing the

“moonshine” or even “sunshine” that they have brought to these critical issues.
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