Stan: A (Bayesian) Directed Graphical Model Compiler

Bob Carpenter

with Matt Hoffman, Ben Goodrich, Daniel Lee
Jiqiang Guo, Michael Malecki, and Andrew Gelman

Columbia University, Department of Statistics

NYC Machine Learning Meetup: January 2012
The Big Picture

- **Application**: Fit rich Bayesian statistical models

- **Problem**: Gibbs too slow, Metropolis too problem-specific

- **Solution**: Hamiltonian Monte Carlo

- **Problem**: Interpreters too slow, won’t scale

- **Solution**: Compilation

- **Problem**: Need gradients of log posterior for HMC

- **Solution**: Reverse-mode algorithmic differentiation
The Big Picture (cont.)

- **Problem**: Existing algo-diff slow, limited, unextensible
- **Solution**: Our own algo-diff

- **Problem**: Algo-diff requires fully templated functions
- **Solution**: Our own density library, Eigen linear algebra

- **Problem**: Need unconstrained parameters for HMC
- **Solution**: Variable transforms w. Jacobian determinants
The Big Picture (cont.)

- **Problem**: Need ease of use of BUGS
- **Solution**: Support directed graphical model language

- **Problem**: Need to tune parameters for HMC
- **Solution**: Auto tuning, adaptation

- **Problem**: Efficient up-to-proportion calcs
- **Solution**: Density template metaprogramming
The Big Picture (conclusion)

- **Problem**: Poor error checking in model
- **Solution**: Static model typing, informative exceptions

- **Problem**: Poor boundary behavior
- **Solution**: Calculate limits (e.g. $\lim_{x \to 0} x \log x$)

- **Problem**: Restrictive licensing (e.g., closed, GPL, etc.)
- **Solution**: Open-source, BSD license
Bayesian Data Analysis

• “By Bayesian data analysis, we mean practical methods for making inferences from data using probability models for quantities we observe and about which we wish to learn.”

• “The essential characteristic of Bayesian methods is their explicit use of probability for quantifying uncertainty in inferences based on statistical analysis.”

[Gelman et al., Bayesian Data Analysis, 2003]
The Process

1. Set up full probability model
 - for all observable & unobservable quantities
 - consistent w. problem knowledge & data collection

2. Condition on observed data
 - calculate posterior probability of unobserved quantities conditional on observed quantities

3. Evaluate
 - model fit
 - implications of posterior

[Ibid.]
Basic Quantities

- Basic Quantities
 - y: observed data
 - \tilde{y}: unknown, potentially observable quantities
 - θ: parameters (and other unobserved quantities)
 - x: constants, predictors for conditional models

- Random models for things that could’ve been otherwise
 - All Stats: Model data y as random
 - Bayesian Stats: Model parameters θ as random
Basic Distributions

- Joint: $p(y, \theta)$
- Sampling / Likelihood: $p(y|\theta)$
- Prior: $p(\theta)$
- Posterior: $p(\theta|y)$
- Data Marginal: $p(y)$
- Posterior Predictive: $p(\tilde{y}|y)$

y observed data, θ parameters, \tilde{y} predictions
Bayes’s Rule: The Big Inversion

- Suppose the data y is fixed (i.e., observed). Then

$$p(\theta | y) = \frac{p(y, \theta)}{p(y)} = \frac{p(y | \theta) p(\theta)}{p(y)}$$

$$= \frac{p(y | \theta) p(\theta)}{\int p(y, \theta) \, d\theta}$$

$$= \frac{p(y | \theta) p(\theta)}{\int p(y | \theta) p(\theta) \, d\theta}$$

$$\propto p(y | \theta) p(\theta) = p(y, \theta)$$

- Posterior proportional to likelihood times prior (i.e., joint)
Directed Graphical Models

- Directed acyclic graph
- Nodes are data or parameters
- Edges represent dependencies
- Generative model
 - Start at top
 - Sample each node conditioned on parents
- Determines joint probability
BUGS Declarative Model Language

- Declarative specification of directed graphical models
- Variables are (potentially) random quantities
- Full set of arithmetic, functional, and matrix expressions
- Sampling: \(y \sim \text{Foo}(\theta); \)
- Assignment: \(y \leftarrow \text{bar}(x); \)
- For Loops: `for (n in 1:N) { ... }`
- Constants modeled if on left of sampling
 - usually modeled: outcomes
 - not usually modeled: predictors, data sizes
Normal (Sampling)

for (n in 1:N)
 y[n] ~ normal(0,1);

• Sampling: data (\(N\)), params (\(y\))

Normal (Full)

\[
\begin{align*}
\mu & \sim \text{normal}(0,10); \\
\sigma^2 & \sim \text{inv_gamma}(1,1); \\
\text{for} \ (n \ \text{in} \ 1:N) \\
& \quad \ y[n] \sim \text{normal}(\mu, \sigma^2);
\end{align*}
\]

- Estimation: data \((y, N)\), params \((\mu, \sigma)\)
- Sampling: data \((\mu, \sigma^2, N)\), params \((y)\)
Naive Bayes

- $\pi \sim \text{Dirichlet}(\alpha)$;
 for (d in 1:D) {
 $z[d] \sim \text{Discrete}(\pi)$;
 for (n in 1:N[d])
 $w[d,n] \sim \text{Discrete}(\phi[z[d]])$;
 }
 for (k in 1:K)
 $\phi[k] \sim \text{Dirichlet}(\beta)$;

- Estimation: data $(w, z, D, N, \alpha, \beta)$, params (π, ϕ)
- Prediction: data $(w, D, N, \pi, \phi, \alpha, \beta)$, params (z)
- Clustering: data (w, D, N, α, β), params (z, ϕ, π)
Supervision: Full, Semi-, and Un-

- How variable is used
 - Supervised: declared as data
 - Unsupervised: declared as parameter
 - Semi-supervised: partly data, partly parameter
- Full probability model does not change
- E.g., Semi-supervised naive Bayes
 - partly estimation, known categories $z[n]$ supervised
 - partly clustering, unknown $z[n]$ unsupervised
Latent Dirichlet Allocation

for (d in 1:D) {
 theta[d] ~ Dirichlet(alpha);
 for (n in 1:N[d]) {
 z[d,n] ~ Discrete(theta[d]);
 w[d,n] ~ Discrete(phi[z[d,n]]);
 }
}

for (k in 1:K)
 phi[k] ~ Dirichlet(beta);

• Clustering: data \(w, \alpha, \beta, D, K, N\), params \(\theta, \phi, z\)

(Blei et al. 2003)
Logistic Regression

- for (k in 1:K)
 \[\text{beta}[k] \sim \text{cauchy}(0,2.5); \]
- for (n in 1:N)
 \[y[n] \sim \text{bern}(\text{inv_logit}(\text{transpose}(\text{beta}) \ast x[n])) \]

- Estimate: data \((y, x, K, N)\), params \((\beta)\)
- Predict: data \((\beta, x, K, N)\), params \((y)\)
- Pluggable prior
 - Cauchy, fat tails (allows concentration around mean)
 - Normal (L2), strong due to relatively thin tails
 - Laplace (L1), sparse only with point estimates
BUGS to Joint Probability

• BUGS Model

\[
\begin{align*}
\mu & \sim \text{normal}(0,10); \\
\text{for (n in 1:N)} & \quad y[n] \sim \text{normal}(\mu,1);
\end{align*}
\]

• Joint Probability

\[
p(\mu, y) = \text{Normal}(\mu|0,10) \\
\times \prod_{n=1}^{N} \text{Normal}(y_n|0,1)
\]
Monte Carlo Methods

- For integrals that are impossible to solve analytically
- But for which sampling and evaluation is tractable
- Compute plug-in estimates of statistics based on randomly generated variates (e.g., means, variances, quantiles/intervals, comparisons)
- Accuracy with M (independent) samples proportional to
 \[\frac{1}{\sqrt{M}} \]
 e.g., 100 times more samples per decimal place!

(Metropolis and Ulam 1949)
Monte Carlo Example

• Posterior expectation of θ:

$$\mathbb{E}[\theta|y] = \int \theta \ p(\theta|y) \ d\theta.$$

• Bayesian estimate minimizing expected square error:

$$\hat{\theta} = \arg \min_{\theta'} \mathbb{E}[(\theta - \theta')^2|y] = \mathbb{E}[\theta|y]$$

• Generate samples $\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(M)}$ drawn from $p(\theta|y)$

• Monte Carlo Estimator plugs in average for expectation:

$$\mathbb{E}[\theta|y] \approx \frac{1}{M} \sum_{m=1}^{M} \theta^{(m)}$$
Monte Carlo Example II

- Bayesian alternative to frequentist hypothesis testing
- Use probability to summarize results
- Bayesian comparison: probability \(\theta_1 > \theta_2 \) given data \(y \)?

\[
\Pr[\theta_1 > \theta_2 | y] = \int \int \mathbb{I}(\theta_1 > \theta_2) \, p(\theta_1 | y) \, p(\theta_2 | y) \, d\theta_2 \, d\theta_2
\]

\[
\approx \frac{1}{M} \sum_{m=1}^{M} \mathbb{I}(\theta_1^{(m)} > \theta_2^{(m)})
\]

- (Bayesian hierarchical model “adjusts” for multiple comparisons)
Markov Chain Monte Carlo

- When sampling independently from $p(\theta | y)$ impossible
- $\theta^{(m)}$ drawn via a Markov chain $p(\theta^{(m)} | y, \theta^{(m-1)})$
- Require MCMC marginal $p(\theta^{(m)} | y)$ equal to true posterior marginal
- Leads to auto-correlation in samples $\theta^{(1)}, \ldots, \theta^{(m)}$
- Effective sample size M_{eff} divides out auto-correlation (must be estimated)
- Estimation accuracy proportional to $1/\sqrt{M_{\text{eff}}}$
Gibbs Sampling

- Samples a parameter given data and other parameters
- Requires conditional posterior $p(\theta_n | y, \theta_{-n})$
- Conditional posterior easy in directed graphical model
- Requires general unidimensional sampler for non-conjugacy
 - JAGS uses slice sampler
 - BUGS uses adaptive rejection sampler
- Conditional sampling and general unidimensional sampler can both lead to slow convergence and mixing

(Geman and Geman 1984)
Metropolis-Hastings Sampling

- Proposes new point by changing all parameters randomly
- Computes accept probability of new point based on ratio of new to old log probability (and proposal density)
- Only requires evaluation of $p(\theta|y)$
- Requires good proposal mechanism to be effective
- Acceptance requires small changes in log probability
- But small step sizes lead to random walks and slow convergence and mixing

(Metropolis et al. 1953; Hastings 1970)
Hamiltonian Monte Carlo

- Converges faster and explores posterior faster when posterior is complex

- Function of interest is log posterior (up to proportion)

\[
\log p(\theta|y) \propto \log p(y|\theta) + \log p(\theta)
\]

- HMC exploits its gradient

\[
g = \nabla_\theta \log p(\theta|y)
\]

\[
= \left(\frac{d}{d\theta_1} \log p(\theta|y), \ldots \frac{d}{d\theta_K} \log p(\theta|y) \right)
\]

(Duane et al. 1987; Neal 1994)
HMC’s Physical Analogy

1. Negative log posterior \(- \log p(\theta|y) \) is potential energy
2. Start point mass at current parameter position \(\theta \)
3. Add random kinetic energy (momentum)
4. Simulate trajectory of the point mass over time \(t \)
5. Return new parameter position

* In practice, Metropolis adjust for imprecision in trajectory simulation due to discretizing Hamiltonian dynamics
A (Simple) HMC Update

1. \(m \sim \text{Norm}(0, I) \quad H = \frac{m^\top m}{2} - \log p(\theta|y) \)
2. \(\theta^{\text{new}} = \theta \)
3. repeat \(L \) times:
 (a) \(m = m - \frac{1}{2} \epsilon g(\theta^{\text{new}}) \)
 (b) \(\theta^{\text{new}} = \theta^{\text{new}} + \epsilon m \)
 (c) \(m = m - \frac{1}{2} \epsilon g(\theta^{\text{new}}) \)
4. \(H^{\text{new}} = \frac{m^\top m}{2} - \log p(\theta^{\text{new}}|y) \)
5. if \(\text{Unif}(0, 1) < \exp(H - H^{\text{new}}) \), then \(\theta^{\text{new}} \), else \(\theta \)
Hoffman and Gelman

Figure 2: Example of a trajectory generated during one iteration of NUTS. The blue ellipse is a contour of the target distribution, the black open circles are the positions θ traced out by the leapfrog integrator and associated with elements of the set of visited states B, the black solid circle is the starting position, the red solid circles are positions associated with states that must be excluded from the set C of possible next samples because their joint probability is below the slice variable u, and the positions with a red "x" through them correspond to states that must be excluded from C to satisfy detailed balance. The blue arrow is the vector from the positions associated with the leftmost to the rightmost leaf nodes in the rightmost height-3 subtree, and the magenta arrow is the (normalized) momentum vector at the final state in the trajectory. The doubling process stops here, since the blue and magenta arrows make an angle of more than 90 degrees. The crossed-out nodes with a red "x" are in the right half-tree, and must be ignored when choosing the next sample.

- Blue ellipse is contour of target distribution
- Initial position at black solid circle
- Arrows indicate a U-turn in momentum

being more complicated, the analogous algorithm that eliminates the slice variable seems empirically to be slightly less efficient than the algorithm presented in this paper.
No-U-Turn Sampler (NUTS)

- HMC highly sensitive to tuning parameters
 - discretization step size ϵ
 - discretization number of steps L
- NUTS sets ϵ during burn-in by stochastic optimization (Nesterov-style dual averaging)
- NUTS chooses L online per-sample using no-U-turn idea:
 keep simulating as long as position gets further away from initial position
- Number of steps just a bit of bookkeeping on top of HMC
 (Hoffman and Gelman, 2011)
NUTS vs. Gibbs and Metropolis

- Two dimensions of highly correlated 250-dim distribution
- 1M samples from Metropolis, 1M from Gibbs (thinned to 1K)
- 1K samples from NUTS, 1K independent draws
Figure 6: Effective sample size (ESS) as a function of \(\delta \) and (for HMC) simulation length \(\epsilon L \) for the multivariate normal, logistic regression, hierarchical logistic regression, and stochastic volatility models. Each point shows the ESS divided by the number of gradient evaluations for a separate experiment; lines denote the average of the points' y-values for a particular \(\delta \). Leftmost plots are NUTS’s performance, each other plot shows HMC’s performance for a different setting of \(\epsilon L \).

- 250-D normal and logistic regression models
- Vertical axis is effective sample size per sample (bigger better)
- Left) NUTS; Right) HMC with increasing \(t = \epsilon L \)
NUTS vs. Basic HMC II

- Hierarchical logistic regression and stochastic volatility
- Simulation time t is ϵL, step size (ϵ) times number of steps (L)
- NUTS can beat optimally tuned HMC (latter very expensive)
Stan C++ Library

- Beta available from Google code; 1.0 release soon
- C++, with heavy use of templates
- HMC and NUTS continuous samplers (Metropolis in v2)
- Gibbs (bounded) and slice (unbounded) for discrete
- Model (probability, gradient) extends abstract base class
- Automatic gradient w. algorithmic differentiation
- Fully templated densities, cumulative densities, transforms
- (New) BSD licensed
Stan — Graphical Model Compiler

- Compiler for directed graphical model language (∼ BUGS)
- Generates C++ model class
- Compile model from command line
- Run model from command line
 - random seeds
 - multiple chains (useful for convergence monitoring)
 - parameter initialization
 - HMC parameters and NUTS hyperparameters
 - CSV sample output
Stan Integration with R

- Effective sample size calcs (variogram-based)
- Convergence monitoring (split \hat{R})
- Plots of posteriors
- Statistical summaries and comparisons

- Python, MATLAB to come
Extensions to BUGS Language

- User-defined functions (JAGS, Stan)
- Data Transformations (JAGS, Stan)
- General matrix solvers (Stan)
- Local variables (Stan)
Variable Typing

- Classes of variables (Stan):
 data, transformed data, parameters, transformed parameters, derived quantities, local

- Static variable typing (Stan):
 Unconstrained: int, double, vector, row vector, matrix, list
 Constrained: (half) bounded, simplex, ordered, correlation matrix, covariance matrix
Algorithmic Differentiation

- Forward-mode fast for single derivative
- Reverse-mode uses dynamic programming to evaluate gradient in time proportional to function eval (independently of number of dimensions)

Functional Behavior

- Write function templating out scalar variables
- Instantiate template with algo-dif variables
- Call function
- Fetch gradient
Algorithmic Differentiation (cont.)

- Override all built-in scalar ops (operators, lib functions)
 - Calculate values and partial derivatives w.r.t. all arguments
 - Object-oriented design supports user extensions
- Algo-dif uses templated variables to build expression tree
- Nodes of tree represent intermediate expressions
- Nodes topologically sorted on a stack
- Custom arena-based memory management (thread localizable at 20% performance hit)
- Propagate partial derivatives down along edges
Algorithmic Differentiation (cont.)

- Non-negligible cost compared to well-coded derivatives
- Space per operation: 24 bytes + 8 bytes/argument
 - especially problematic for iterative algorithms
- Time per operation: about 4 times slower than basic function evaluation
 - Mostly due to partial derivative virtual function
- Can partially evaluate some expressions and vectorize repeated operations with shared suboperations
Variable Transforms

- HMC works best with unconstrained variables
- (Technically possible to bounce off boundaries)
- Automatically transform variables from unconstrained to constrained
- Add log of the absolute determinant of the Jacobian of the transform
- Jacobian is the matrix of output variable gradients with respect to each input variable
Example Transforms

- Lower bound 0: \(x \mapsto \exp(x) \)

- Constrained \((0, 1)\): \(x \mapsto \logit^{-1}(x) \)

- Simplex: \(x \mapsto \text{softmax}(x) \) (or hyperspherical + Weierstrss); \(K - 1 \) degrees of freedom

- Ordered: \((x_1, x_2) \mapsto (x_1, x_1 + \exp(x_2))\)

- Correlation Matrix: Lewandowski et al. C-vines transform; \(\binom{K}{2} \) degrees of freedom

- Covariance Matrix: Scale correlation matrix; \(K + \binom{K}{2} \) degrees of freedom
Calculating Prop-to Log Densities

- Only need calculations to proportion
- Drop additive terms that only have constants
- Consider log of normal distribution:

\[
\log \text{Normal}(y|\mu, \sigma) = -\log \sqrt{2\pi} - 0.5 \log \sigma + \frac{(y - \mu)^2}{2\sigma^2}
\]

- Drop first term always if only need proportion
- Drop second term if \(\sigma\) is constant
- Drop third term if all arguments constant
• Type traits to statically test fixed values

• template <typename T_out,
 typename T_loc,
 typename T_scale>
 typename promote_args<T_out,T_loc,T_scale>::type
 normal_log(T_out y, T_loc mu, T_scale sigma) {
 ...
 if (is_variable<T_scale>::value)
 result += 0.5 * log(sigma);
 ...
 }
Stan’s Namesake

- Stanislaw Ulam (1909–1984)
- Co-inventor of Monte Carlo method (and hydrogen bomb)

Ulam holding the Fermiac, Enrico Fermi’s physical Monte Carlo simulator for random neutron diffusion
The End