
Stan: A (Bayesian)
Directed Graphical Model Compiler

Bob Carpenter
with Matt Hoffman, Ben Goodrich, Daniel Lee
Jiqiang Guo, Michael Malecki, and Andrew Gelman

Columbia University, Department of Statistics

NYC Machine Learning Meetup: January 2012

1

The Big Picture
• Application: Fit rich Bayesian statistical models

• Problem: Gibbs too slow, Metropolis too problem-specific

• Solution: Hamiltonian Monte Carlo

• Problem: Interpreters too slow, won’t scale

• Solution: Compilation

• Problem: Need gradients of log posterior for HMC

• Solution: Reverse-mode algorithmic differentation

2

The Big Picture (cont.)

• Problem: Existing algo-diff slow, limited, unextensible

• Solution: Our own algo-diff

• Problem: Algo-diff requires fully templated functions

• Solution: Our own density library, Eigen linear algebra

• Problem: Need unconstrained parameters for HMC

• Solution: Variable transforms w. Jacobian determinants

3

The Big Picture (cont.)

• Problem: Need ease of use of BUGS

• Solution: Support directed graphical model language

• Problem: Need to tune parameters for HMC

• Solution: Auto tuning, adaptation

• Problem: Efficient up-to-proportion calcs

• Solution: Density template metaprogramming

4

The Big Picture (conclusion)

• Problem: Poor error checking in model

• Solution: Static model typing, informative exceptions

• Problem: Poor boundary behavior

• Solution: Calculate limits (e.g. limx→0 x log x)

• Problem: Restrictive licensing (e.g., closed, GPL, etc.)

• Solution: Open-source, BSD license

5

Bayesian Data Analysis

• “By Bayesian data analysis, we mean practical methods
for making inferences from data using probability models
for quantities we observe and about which we wish to
learn.”

• “The essential characteristic of Bayesian methods is their
explict use of probability for quantifying uncertainty
in inferences based on statistical analysis.”

[Gelman et al., Bayesian Data Analysis, 2003]

6

The Process
1. Set up full probability model

• for all observable & unobservable quantities
• consistent w. problem knowledge & data collection

2. Condition on observed data
• caclulate posterior probability of unobserved quan-

tities conditional on observed quantities

3. Evaluate
• model fit
• implications of posterior

[Ibid.]

7

Basic Quantities

• Basic Quantities

– y: observed data

– ỹ: unknown, potentially observable quantities

– θ: parameters (and other unobserved quantities)

– x: constants, predictors for conditional models

• Random models for things that could’ve been otherwise

– All Stats: Model data y as random

– Bayesian Stats: Model parameters θ as random

8

Basic Distributions

• Joint: p(y, θ)

• Sampling / Likelihood: p(y|θ)

• Prior: p(θ)

• Posterior: p(θ|y)

• Data Marginal: p(y)

• Posterior Predictive: p(ỹ|y)

y observed data, θ parameters, ỹ predictions

9

Bayes’s Rule: The Big Inversion
• Suppose the data y is fixed (i.e., observed). Then

p(θ|y) =
p(y, θ)

p(y)
=

p(y|θ) p(θ)
p(y)

=
p(y|θ) p(θ)∫
p(y, θ) dθ

=
p(y|θ) p(θ)∫
p(y|θ) p(θ) dθ

∝ p(y|θ) p(θ) = p(y, θ)

• Posterior proportional to likelihood times prior (i.e., joint)

10

Directed Graphical Models

• Directed acyclic graph

• Nodes are data or parameters

• Edges represent dependencies

• Generative model

– Start at top

– Sample each node conditioned on parents

• Determines joint probability

11

BUGS Declarative Model Language
• Declarative specification of directed graphical models

• Variables are (potentially) random quantities

• Full set of arithmetic, functional, and matrix expressions

• Sampling: y ∼ Foo(theta);

• Assignment: y <- bar(x);

• For Loops: for (n in 1:N) { ... }
• Constants modeled if on left of sampling

– usually modeled: outcomes
– not usually modeled: predictors, data sizes

12

Normal (Sampling)

for (n in 1:N)

y[n] ~ normal(0,1);

• Sampling: data (N), params (y)

13

Normal (Full)

mu ~ normal(0,10);

sigma_sq ~ inv_gamma(1,1);

for (n in 1:N)

y[n] ~ normal(mu,sigma_sq);

• Estimation: data (y,N), params (µ, σ)

• Sampling: data (µ, σ2, N), params (y)

14

Naive Bayes
• pi ~ Dirichlet(alpha);

for (d in 1:D) {

z[d] ~ Discrete(pi);

for (n in 1:N[d])

w[d,n] ~ Discrete(phi[z[d]]);

}

for (k i 1:K)

phi[k] ~ Dirichlet(beta);

• Estimation: data (w, z,D,N, α, β), params (π, φ)

• Prediction: data (w,D,N, π, φ, α, β), params (z)

• Clustering: data (w,D,N, α, β), params (z, φ, π)

15

Supervision: Full, Semi-, and Un-

• How variable is used

– Supervised: declared as data

– Unsupervised: declared as parameter

– Semi-supervised: partly data, partly parameter

• Full probability model does not change

• E.g., Semi-supervised naive Bayes

– partly estimation, known categories z[n] supervised

– partly clustering, unknown z[n] unsupervised

16

Latent Dirichlet Allocation

for (d in 1:D) {

theta[d] ~ Dirichlet(alpha);

for (n in 1:N[d]) {

z[d,n] ~ Discrete(theta[d]);

w[d,n] ~ Discrete(phi[z[d,n]]);

}

}

for (k i 1:K)

phi[k] ~ Dirichlet(beta);

• Clustering: data (w,α, β,D,K,N), params (θ, φ, z)

(Blei et al. 2003)

17

Logistic Regression
• for (k in 1:K)

beta[k] ~ cauchy(0,2.5);

for (n in 1:N)

y[n] ~ bern(inv_logit(transpose(beta) * x[n]))

• Estimate: data (y, x,K,N), params (β)

• Predict: data (β, x,K,N), params (y)

• Pluggable prior

– Cauchy, fat tails (allows concentration around mean)
– Normal (L2), strong due to relatively thin tails
– Laplace (L1), sparse only with point estimates

18

BUGS to Joint Probability

• BUGS Model

mu ~ normal(0,10);

for (n in 1:N)

y[n] ~ normal(mu,1);

• Joint Probability

p(µ, y) = Normal(µ|0, 10)

×
N∏
n=1

Normal(yn|0, 1)

19

Monte Carlo Methods
• For integrals that are impossible to solve analytically

• But for which sampling and evaluation is tractable

• Compute plug-in estimates of statistics based on ran-
domly generated variates (e.g., means, variances, quan-
tiles/intervals, comparisons)

• Accuracy with M (independent) samples proportional to

1√
M

e.g., 100 times more samples per decimal place!

(Metropolis and Ulam 1949)

20

Monte Carlo Example
• Posterior expectation of θ:

E[θ|y] =
∫
θ p(θ|y) dθ.

• Bayesian estimate minimizing expected square error:

θ̂ = argmin
θ′

E[(θ − θ′)2|y] = E[θ|y]

• Generate samples θ(1), θ(2), . . . , θ(M) drawn from p(θ|y)
• Monte Carlo Estimator plugs in average for expectation:

E[θ|y] ≈ 1

M

M∑
m=1

θ(m)

21

Monte Carlo Example II
• Bayesian alternative to frequentist hypothesis testing

• Use probability to summarize results

• Bayesian comparison: probability θ1 > θ2 given data y?

Pr[θ1 > θ2|y] =

∫ ∫
I(θ1 > θ2) p(θ1|y) p(θ2|y) dθ2 dθ2

≈ 1

M

M∑
m=1

I(θ(m)
1 > θ

(m)
2)

• (Bayesian hierarchical model “adjusts” for multiple com-
parisons)

22

Markov Chain Monte Carlo

• When sampling independently from p(θ|y) impossible

• θ(m) drawn via a Markov chain p(θ(m)|y, θ(m−1))

• Require MCMC marginal p(θ(m)|y) equal to true poste-
rior marginal

• Leads to auto-correlation in samples θ(1), . . . , θ(m)

• Effective sample size Meff divides out auto-correlation
(must be estimated)

• Estimation accuracy proportional to 1/
√
Meff

23

Gibbs Sampling

• Samples a parameter given data and other parameters

• Requires conditional posterior p(θn|y, θ−n)
• Conditional posterior easy in directed graphical model

• Requires general unidimensional sampler for non-conjugacy

– JAGS uses slice sampler
– BUGS uses adaptive rejection sampler

• Conditional sampling and general unidimensional sam-
pler can both lead to slow convergence and mixing

(Geman and Geman 1984)

24

Metropolis-Hastings Sampling

• Proposes new point by changing all parameters randomly

• Computes accept probability of new point based on ratio
of new to old log probability (and proposal density)

• Only requires evaluation of p(θ|y)

• Requires good proposal mechanism to be effective

• Acceptance requires small changes in log probability

• But small step sizes lead to random walks and slow con-
vergence and mixing

(Metropolis et al. 1953; Hastings 1970)

25

Hamiltonian Monte Carlo
• Converges faster and explores posterior faster when pos-

terior is complex

• Function of interest is log posterior (up to proportion)

log p(θ|y) ∝ log p(y|θ) + log p(θ)

• HMC exploits its gradient

g = ∇θ log p(θ|y)

=

(
d

dθ1
log p(θ|y), . . . d

dθK
log p(θ|y)

)
(Duane et al. 1987; Neal 1994)

26

HMC’s Physical Analogy

1. Negative log posterior − log p(θ|y) is potential energy

2. Start point mass at current parameter position θ

3. Add random kinetic energy (momentum)

4. Simulate trajectory of the point mass over time t

5. Return new parameter position∗

∗ In practice, Metropolis adjust for imprecision in trajectory
simulation due to discretizing Hamiltonian dynamics

27

A (Simple) HMC Update

1. m ∼ Norm(0, I) H = m>m
2 − log p(θ|y)

2. θnew = θ

3. repeat L times:

(a) m = m− 1
2 ε g(θ

new)

(b) θnew = θnew + ε m

(c) m = m− 1
2 ε g(θ

new)

4. Hnew = m>m
2 − log p(θnew|y)

5. if Unif(0, 1) < exp(H −Hnew), then θnew, else θ

28

HMC Example TrajectoryHoffman and Gelman

−0.1 0 0.1 0.2 0.3 0.4 0.5
−0.1

0

0.1

0.2

0.3

0.4

Figure 2: Example of a trajectory generated during one iteration of NUTS. The blue ellipse
is a contour of the target distribution, the black open circles are the positions θ
traced out by the leapfrog integrator and associated with elements of the set of
visited states B, the black solid circle is the starting position, the red solid circles
are positions associated with states that must be excluded from the set C of
possible next samples because their joint probability is below the slice variable u,
and the positions with a red “x” through them correspond to states that must be
excluded from C to satisfy detailed balance. The blue arrow is the vector from the
positions associated with the leftmost to the rightmost leaf nodes in the rightmost
height-3 subtree, and the magenta arrow is the (normalized) momentum vector
at the final state in the trajectory. The doubling process stops here, since the
blue and magenta arrows make an angle of more than 90 degrees. The crossed-
out nodes with a red “x” are in the right half-tree, and must be ignored when
choosing the next sample.

being more complicated, the analogous algorithm that eliminates the slice variable seems
empirically to be slightly less efficient than the algorithm presented in this paper.

6

• Blue ellipse is contour of target distribution

• Initial position at black solid circle

• Arrows indicate a U-turn in momentum

29

No-U-Turn Sampler (NUTS)
• HMC highly sensitive to tuning parameters

– discretization step size ε
– discretization number of steps L

• NUTS sets ε during burn-in by stochastic optimization
(Nesterov-style dual averaging)

• NUTS chooses L online per-sample using no-U-turn idea:

keep simulating as long as position gets fur-
ther away from initial position

• Number of steps just a bit of bookkeeping on top of HMC

(Hoffman and Gelman, 2011)

30

NUTS vs. Gibbs and Metropolis
The No-U-Turn Sampler

Figure 7: Samples generated by random-walk Metropolis, Gibbs sampling, and NUTS. The plots

compare 1,000 independent draws from a highly correlated 250-dimensional distribu-

tion (right) with 1,000,000 samples (thinned to 1,000 samples for display) generated by

random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000 samples for display)

generated by Gibbs sampling (second from left), and 1,000 samples generated by NUTS

(second from right). Only the first two dimensions are shown here.

4.4 Comparing the Efficiency of HMC and NUTS

Figure 6 compares the efficiency of HMC (with various simulation lengths λ ≈ �L) and
NUTS (which chooses simulation lengths automatically). The x-axis in each plot is the
target δ used by the dual averaging algorithm from section 3.2 to automatically tune the step
size �. The y-axis is the effective sample size (ESS) generated by each sampler, normalized by
the number of gradient evaluations used in generating the samples. HMC’s best performance
seems to occur around δ = 0.65, suggesting that this is indeed a reasonable default value
for a variety of problems. NUTS’s best performance seems to occur around δ = 0.6, but
does not seem to depend strongly on δ within the range δ ∈ [0.45, 0.65]. δ = 0.6 therefore
seems like a reasonable default value for NUTS.

On the two logistic regression problems NUTS is able to produce effectively indepen-
dent samples about as efficiently as HMC can. On the multivariate normal and stochastic
volatility problems, NUTS with δ = 0.6 outperforms HMC’s best ESS by about a factor of
three.

As expected, HMC’s performance degrades if an inappropriate simulation length is cho-
sen. Across the four target distributions we tested, the best simulation lengths λ for HMC
varied by about a factor of 100, with the longest optimal λ being 17.62 (for the multivari-
ate normal) and the shortest optimal λ being 0.17 (for the simple logistic regression). In
practice, finding a good simulation length for HMC will usually require some number of
preliminary runs. The results in Figure 6 suggest that NUTS can generate samples at least
as efficiently as HMC, even discounting the cost of any preliminary runs needed to tune
HMC’s simulation length.

25

• Two dimensions of highly correlated 250-dim distribution

• 1M samples from Metropolis, 1M from Gibbs (thinned to
1K)

• 1K samples from NUTS, 1K independent draws

31

NUTS vs. Basic HMC
Hoffman and Gelman

Figure 6: Effective sample size (ESS) as a function of δ and (for HMC) simulation length
�L for the multivariate normal, logistic regression, hierarchical logistic regression,
and stochastic volatility models. Each point shows the ESS divided by the number
of gradient evaluations for a separate experiment; lines denote the average of the
points’ y-values for a particular δ. Leftmost plots are NUTS’s performance, each
other plot shows HMC’s performance for a different setting of �L.

The trajectory length (measured in number of states visited) grows as the acceptance
rate target δ grows, which is to be expected since a higher δ will lead to a smaller step
size �, which in turn will mean that more leapfrog steps are necessary before the trajectory
doubles back on itself and satisfies equation 9.

24

• 250-D normal and logistic regression models

• Vertical axis is effective sample size per sample (bigger better)

• Left) NUTS; Right) HMC with increasing t = εL

32

NUTS vs. Basic HMC II

Hoffman and Gelman

Figure 6: Effective sample size (ESS) as a function of δ and (for HMC) simulation length
�L for the multivariate normal, logistic regression, hierarchical logistic regression,
and stochastic volatility models. Each point shows the ESS divided by the number
of gradient evaluations for a separate experiment; lines denote the average of the
points’ y-values for a particular δ. Leftmost plots are NUTS’s performance, each
other plot shows HMC’s performance for a different setting of �L.

The trajectory length (measured in number of states visited) grows as the acceptance
rate target δ grows, which is to be expected since a higher δ will lead to a smaller step
size �, which in turn will mean that more leapfrog steps are necessary before the trajectory
doubles back on itself and satisfies equation 9.

24

• Hierarchical logistic regression and stochastic volatility
• Simulation time t is ε L, step size (ε) times number of steps (L)
• NUTS can beat optimally tuned HMC (latter very expensive)

33

Stan C++ Library
• Beta available from Google code; 1.0 release soon

• C++, with heavy use of templates

• HMC and NUTS continuous samplers (Metropolis in v2)

• Gibbs (bounded) and slice (unbounded) for discrete

• Model (probability, gradient) extends abstract base class

• Automatic gradient w. algorithmic differentiation

• Fully templated densities, cumulative densities, trans-
forms

• (New) BSD licensed

34

Stan — Graphical Model Compiler

• Compiler for directed graphical model language (∼ BUGS)

• Generates C++ model class

• Compile model from command line

• Run model from command line

– random seeds
– multiple chains (useful for convergence monitoring)
– parameter initialization
– HMC parameters and NUTS hyperparameters
– CSV sample output

35

Stan Integration with R

• Effective sample size calcs (variogram-based)

• Convergence monitoring (split R̂)

• Plots of posteriors

• Statistical summaries and comparisons

• Python, MATLAB to come

36

Extensions to BUGS Language

• User-defined functions (JAGS, Stan)

• Data Transformations (JAGS, Stan)

• General matrix solvers (Stan)

• Local variables (Stan)

37

Variable Typing

• Classes of variables (Stan):
data, transformed data, parameters, transformed parameters,
derived quantities, local

• Static variable typing (Stan):
Unconstrained: int, double, vector, row vector, matrix, list
Constrained: (half) bounded, simplex, ordered, correlation
matrix, covariance matrix

38

Algorithmic Differentiation

• Forward-mode fast for single derivative

• Reverse-mode uses dynamic programming to evaluate
gradient in time proportional to function eval (indepen-
dently of number of dimensions)

• Functional Behavior

– Write function templating out scalar variables

– Instantiate template with algo-dif variables

– Call function

– Fetch gradient

39

Algorithmic Differentiation (cont.)
• Override all built-in scalar ops (operators, lib functions)

– Calculate values and partial derivates w.r.t. all arguments

– Object-oriented design supports user extensions

• Algo-dif uses templated variables to build expression tree

• Nodes of tree represent intermediate expressions

• Nodes topologically sorted on a stack

• Custom arena-based memory management (thread lo-
calizable at 20% performance hit)

• Propagate partial derivatives down along edges

40

Algorithmic Differentiation (cont.)

• Non-negligible cost compared to well-coded derivatives

• Space per operation: 24 bytes + 8 bytes/argument

– especially problematic for iterative algorithms

• Time per operation: about 4 times slower than basic
function evaluation

– Mostly due to partial derivative virtual function

• Can partially evaluate some expressions and vectorize
repeated operations with shared suboperations

41

Variable Transforms

• HMC works best with unconstrained variables

• (Technically possible to bounce off boundaries)

• Automatically transform variables from unconstrained to
constrained

• Add log of the absolute determinant of the Jacobian of
the transform

• Jacobian is the matrix of output variable gradients with
respect to each input variable

42

Example Transforms

• Lower bound 0: x 7→ exp(x)

• Constrained (0, 1): x 7→ logit−1(x)

• Simplex: x 7→ softmax(x) (or hyperspherical + Weier-
strss); K − 1 degrees of freedom

• Ordered: (x1, x2) 7→ (x1, x1 + exp(x2))

• Correlation Matrix: Lewandowski et al. C-vines trans-
form;

(
K
2

)
degrees of freedom

• Covariance Matrix: Scale correlation matrix; K +
(
K
2

)
degrees of freedom

43

Calculating Prop-to Log Densities

• Only need calculations to proportion

• Drop additive terms that only have constants

• Consider log of normal distribution:

logNormal(y|µ, σ) = − log
√
2π − 0.5 log σ +

(y − µ)2
2σ2

– Drop first term always if only need proportion

– Drop second term if σ is constant

– Drop third term if all arguments constant

44

Templates for Proportionality

• Type traits to statically test fixed values

• template <typename T_out,

typename T_loc,

typename T_scale>

typename promote_args<T_out,T_loc,T_scale>::type

normal_log(T_out y, T_loc mu, T_scale sigma) {

...

if (is_variable<T_scale>::value)

result += 0.5 * log(sigma);

...

}

45

Stan’s Namesake

• Stanislaw Ulam (1909–1984)

• Co-inventor of Monte Carlo method (and hydrogen bomb)

• Ulam holding the Fermiac, Enrico Fermi’s physical Monte Carlo
simulator for random neutron diffusion

46

The End

47

