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Abstract

Penalized regression methods, such as L
1

regularization, are routinely used in high-dimensional

applications, and there is a rich literature on optimality properties under sparsity assumptions. In

the Bayesian paradigm, sparsity is routinely induced through two-component mixture priors having

a probability mass at zero, but such priors encounter daunting computational problems in high

dimensions. This has motivated an amazing variety of continuous shrinkage priors, which can be

expressed as global-local scale mixtures of Gaussians, facilitating computation. In sharp contrast

to the corresponding frequentist literature, very little is known about the properties of such priors.

Focusing on a broad class of shrinkage priors, we provide precise results on prior and posterior

concentration. Interestingly, we demonstrate that most commonly used shrinkage priors, including

the Bayesian Lasso, are suboptimal in high-dimensional settings. A new class of Dirichlet Laplace

(DL) priors are proposed, which are optimal and lead to efficient posterior computation exploiting

results from normalized random measure theory. Finite sample performance of Dirichlet Laplace

priors relative to alternatives is assessed in simulations.

KEYWORDS: Bayesian; Convergence rate; High dimensional; Lasso; L
1

; Penalized regression;

Regularization; Shrinkage prior.

1



1. INTRODUCTION

High-dimensional data have become commonplace in broad application areas, and there is an ex-

ponentially increasing literature on statistical and computational methods for big data. In such

settings, it is well known that classical methods such as maximum likelihood estimation break

down, motivating a rich variety of alternatives based on penalization and thresholding. Most pe-

nalization approaches produce a point estimate of a high-dimensional coefficient vector, which

has a Bayesian interpretation as corresponding to the mode of a posterior distribution obtained

under a shrinkage prior. For example, the wildly popular Lasso/L
1

regularization approach to

regression [28] is equivalent to maximum a posteriori (MAP) estimation under a Gaussian lin-

ear regression model having a double exponential (Laplace) prior on the coefficients. There is

a rich theoretical literature justifying the optimality properties of such penalization approaches

[19, 20, 25, 29, 33, 34], with fast algorithms [9] and compelling applied results leading to routine

use of L
1

regularization in particular.

The overwhelming emphasis in this literature has been on rapidly producing a point estimate

with good empirical and theoretical properties. However, in many applications, it is crucial to

be able to obtain a realistic characterization of uncertainty in the parameters, in functionals of

the parameters and in predictions. Usual frequentist approaches to characterize uncertainty, such

as constructing asymptotic confidence regions or using the bootstrap, can break down in high-

dimensional settings. For example, in regression when the number of subjects n is much less than

the number of predictors p, one cannot naively appeal to asymptotic normality and resampling

from the data may not provide an adequate characterization of uncertainty.

Given that most shrinkage estimators correspond to the mode of a Bayesian posterior, it is nat-

ural to ask whether we can use the whole posterior distribution to provide a probabilistic measure

of uncertainty. Several important questions then arise. Firstly, from a frequentist perspective, we

would like to be able to choose a default shrinkage prior that leads to similar optimality proper-

ties to those shown for L
1

penalization and other approaches. However, instead of showing that a

particular penalty leads to a point estimator having a minimax optimal rate of convergence under
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sparsity assumptions, we would like to obtain a (much stronger) result that the entire posterior

distribution concentrates at the optimal rate, i.e., the posterior probability assigned to a shrinking

neighborhood (proportionally to the optimal rate) of the true value of the parameter converges to

one. In addition to providing a characterization of uncertainty, taking a Bayesian perspective has

distinct advantages in terms of tuning parameter choice, allowing key penalty parameters to be

marginalized over the posterior distribution instead of relying on cross-validation. Also, by induc-

ing penalties through shrinkage priors, important new classes of penalties can be discovered that

may outperform usual L
q

-type choices.

An amazing variety of shrinkage priors have been proposed in the Bayesian literature, with

essentially no theoretical justification for the performance of these priors in the high-dimensional

settings for which they were designed. [11] and [3] provided conditions on the prior for asymp-

totic normality of linear regression coefficients allowing the number of predictors p to increase

with sample size n, with [11] requiring a very slow rate of growth and [3] assuming p  n. These

results required the prior to be sufficiently flat in a neighborhood of the true parameter value, es-

sentially ruling out shrinkage priors. [2] considered shrinkage priors in providing simple sufficient

conditions for posterior consistency in p  n settings, while [27] studied finite sample posterior

contraction in p � n settings.

In studying posterior contraction in high-dimensional settings, it becomes clear that it is critical

to obtain tight bounds on prior concentration. This substantial technical hurdle has prevented any

previous results (to our knowledge) on posterior concentration in p � n settings for shrinkage

priors. In fact, prior concentration is critically important not just in studying frequentist optimality

properties of Bayesian procedures but for Bayesians in obtaining a better understanding of the

behavior of their priors. Without a precise handle on prior concentration, Bayesians are operating

in the dark in choosing shrinkage priors and the associated hyperparameters. It becomes an art

to use intuition and practical experience to indirectly induce a shrinkage prior, while focusing on

Gaussian scale families for computational tractability. Some beautiful classes of priors have been

proposed by [2, 5, 13] among others, with [23] showing that essentially all existing shrinkage priors

fall within the Gaussian global-local scale mixture family. One of our primary goals is to obtain
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theory that can allow evaluation of existing priors and design of novel priors, which are appealing

from a Bayesian perspective in allowing incorporation of prior knowledge and from a frequentist

perspective in leading to minimax optimality under weak sparsity assumptions.

Shrinkage priors provide a continuous alternative to point mass mixture priors, which include

a mass at zero mixed with a continuous density. These priors are highly appealing in allowing

separate control of the level of sparsity and the size of the signal coefficients. In a beautiful re-

cent article, [6] showed optimality properties for carefully chosen point mass mixture priors in

high-dimensional settings. Unfortunately, such priors lead to daunting computational hurdles in

high-dimensions due to the need to explore a 2

p model space; an NP-hard problem. Continu-

ous scale mixtures of Gaussian priors can potentially lead to dramatically more efficient posterior

computation.

Focusing on the normal means problem for simplicity in exposition, we provide general theory

on prior and posterior concentration under shrinkage priors. One of our main results is that a broad

class of Gaussian scale mixture priors, including the Bayesian Lasso [21] and other commonly

used choices such as ridge regression, are sub-optimal. We provide insight into the reasons for this

sub-optimality and propose a new class of Dirichlet-Laplace (DL) priors, which are optimal and

lead to efficient posterior computation. We show promising initial results for DL and Dirichlet-

Cauchy (DC) priors relative to a variety of competitors.

2. PRELIMINARIES

In studying prior and posterior computation for shrinkage priors, we require some notation and

technical concepts. We introduce some of the basic notation here. Technical details in the text are

kept to a minimum, and proofs are deferred to a later section.

Given sequences a
n

, b
n

, we denote a
n

= O(b
n

) if there exists a global constant C such that

a
n

 Cb
n

and a
n

= o(b
n

) if a
n

/b
n

! 0 as n ! 1. For a vector x 2 Rr, kxk
2

denotes its

Euclidean norm. We will use �r�1 to denote the (r�1)-dimensional simplex {x = (x
1

, . . . , x
r

)

T
:

x
j

� 0,
P

r

j=1

x
j

= 1}. Further, let �r�1

0

denote {x = (x
1

, . . . , x
r�1

)

T
: x

j

� 0,
P

r�1

j=1

x
j

 1}.

For a subset S ⇢ {1, . . . , n}, let |S| denote the cardinality of S and define ✓
S

= (✓
j

: j 2 S)
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for a vector ✓ 2 Rn. Denote supp(✓) to be the support of ✓, the subset of {1, . . . , n} corresponding

to the non-zero entries of ✓. Let l
0

[q;n] denote the subset of Rn given by

l
0

[q;n] = {✓ 2 Rn

: #(1  j  n : ✓
j

6= 0)  q}.

Clearly, l
0

[q;n] consists of q-sparse vectors ✓ with |supp(✓)|  q.

Let DE(⌧) denote a zero mean double-exponential or Laplace distribution with density f(y) =

(2⌧)�1e�|y|/⌧ for y 2 R. Also, we use the following parametrization for the three-parameter

generalized inverse Gaussian (giG) distribution: Y ⇠ giG(�, ⇢,�) if f(y) / y��1e�0.5(⇢y+�/y) for

y > 0.

3. CONCENTRATION PROPERTIES OF GLOBAL-LOCAL PRIORS

3.1 Motivation

For a high-dimensional vector ✓ 2 Rn, a natural way to incorporate sparsity in a Bayesian frame-

work is to use point mass mixture priors

✓
j

⇠ (1� ⇡)�
0

+ ⇡g
✓

, j = 1, . . . , n, (1)

where ⇡ = Pr(✓
j

6= 0), E{|supp(✓)| | ⇡} = n⇡ is the prior guess on model size (sparsity level),

and g
✓

is an absolutely continuous density on R. It is common to place a beta prior on ⇡, leading to

a beta-Bernoulli prior on the model size, which conveys an automatic multiplicity adjustment [26].

[6] established that prior (1) with an appropriate beta prior on ⇡ and suitable tail conditions on g
✓

leads to a frequentist minimax optimal rate of posterior contraction in the normal means setting.

We shall revisit the normal means problem in subsection 3.4.

Although point mass mixture priors are intuitively appealing and possess attractive theoretical

properties, posterior sampling requires a stochastic search over an enormous space in complicated

models where marginal likelihoods are not available analytically, leading to slow mixing and con-

vergence [23]. Computational issues and considerations that many of the ✓
j

s may be small but not
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exactly zero has motivated a rich literature on continuous shrinkage priors; for some flavor of the

vast literature refer to [2, 5, 13, 14, 21]. [23] noted that essentially all such shrinkage priors can be

represented as global-local (GL) mixtures of Gaussians,

✓
j

⇠ N(0, 
j

⌧),  
j

⇠ f, ⌧ ⇠ g, (2)

where ⌧ controls global shrinkage towards the origin while the local scales { 
j

} allow deviations

in the degree of shrinkage. If g puts sufficient mass near zero and f is appropriately chosen, GL

priors in (2) can intuitively approximate (1) but through a continuous density concentrated near

zero with heavy tails.

GL priors potentially have substantial computational advantages over variable selection priors,

since the normal scale mixture representation allows for conjugate updating of ✓ and  in a block.

Moreover, a number of frequentist regularization procedures such as ridge, lasso, bridge and elastic

net correspond to posterior modes under GL priors with appropriate choices of f and g. For

example, one obtains a double-exponential prior corresponding to the popular L
1

or lasso penalty

if f has an exponential distribution. However, unlike variable selection priors (1), many aspects of

shrinkage priors are poorly understood. For example, even basic properties, such as how the prior

concentrates around an arbitrary sparse ✓
0

, remain to be shown. Hence, Bayesians tend to operate

in the dark in using such priors, and frequentists tend to be skeptical due to the lack of theoretical

justification.

This skepticism is somewhat warranted, as it is clearly the case that reasonable seeming priors

can have poor performance in high-dimensional settings. For example, choosing ⇡ = 1/2 in prior

(1) leads to an exponentially small prior probability of 2�n assigned to the null model, so that it

becomes literally impossible to override that prior informativeness with the information in the data

to pick the null model. However, with a beta prior on ⇡, this problem can be avoided [26]. In the

same vein, if one places i.i.d. N(0, 1) priors on the entries of ✓, then the induced prior on k✓k is

highly concentrated around
p
n leading to misleading inferences on ✓ almost everywhere. These

are simple cases, but it is of key importance to assess whether such problems arise for other priors
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in the GL family and if so, whether improved classes of priors can be found.

There has been a recent awareness of these issues, motivating a basic assessment of the marginal

properties of shrinkage priors for a single ✓
j

. Recent priors such as the horseshoe [5] and gener-

alized double Pareto [2] are carefully formulated to obtain marginals having a high concentration

around zero with heavy tails. This is well justified, but as we will see below, such marginal behav-

ior alone is not sufficient; it is necessary to study the joint distribution of ✓ on Rn. Specifically,

we recommend studying the prior concentration P(k✓ � ✓
0

k < t
n

) where the true parameter ✓
0

is

assumed to be sparse: ✓
0

2 l
0

[q
n

;n] with the number of non-zero components q
n

⌧ n and

t
n

= n�/2 with � 2 (0, 1). (3)

In models where q
n

⌧ n, the prior must place sufficient mass around sparse vectors to allow

for good posterior contraction; see subsection 3.4 for further details. Now, as a first illustration,

consider the following two extreme scenarios: i.i.d. standard normal priors for the individual

components ✓
j

vs. point mass mixture priors given by (1).

Theorem 3.1. Assume that ✓
0

2 l
0

[q
n

;n] with q
n

= o(n). Then, for i.i.d standard normal priors

on ✓
j

,

P(k✓ � ✓
0

k
2

< t
n

)  e�c n. (4)

For point mass mixture priors (1) with ⇡ ⇠ Beta(1, n + 1) and g
✓

being a standard Laplace

distribution g
✓

⌘ DE(1),

P(k✓ � ✓
0

k
2

< t
n

) � e�cmax{qn,k✓0k1}. (5)

Proof. Using k✓k2
2

⇠ �2

n

, the claim made in (4) follows from an application of Anderson’s in-

equality (6.1) and standard chi-square deviation inequalities. In particular, the exponentially small

concentration also holds for P(k✓
0

k
2

< t
n

). The second claim (5) follows from results in [6].
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As seen from Theorem 3.1, the point mass mixture priors have much improved concentra-

tion around sparse vectors, as compared to the i.i.d. normal prior distributions. The theoretical

properties enjoyed by the point mass mixture priors can mostly be attributed to this improved con-

centration. The above comparison suggests that it is of merit to evaluate a shrinkage prior in high

dimensional models under sparsity assumption by obtaining its concentration rates around sparse

vectors. In this paper, we carry out this program for a wide class of shrinkage priors. Our analysis

also suggests some novel priors with improved concentration around sparse vectors.

In order to communicate our main results to a wide audience, we will first present specific

corollaries of our main results applied to various existing shrinkage priors. The main results are

given in Section 6. Recall the GL priors presented in (2) and the sequence t
n

in (3).

3.2 Prior concentration for global priors

This simplified setting involves only a global parameter, i.e.,  
j

= 1 for all j. This subclass

includes the important example of ridge regression, with ⌧ routinely assigned an inverse-gamma

prior, ⌧ ⇠ IG(↵, �).

Theorem 3.2. Assume ✓ ⇠ GL with  
j

= 1 for all j. If the prior f on the global parameter ⌧ has

an IG(↵, �) distribution, then

P(k✓k
2

< t
n

)  e�Cn

1��
, (6)

where C > 0 is a constant depending only on ↵ and �.

The above theorem shows that compared to i.i.d. normal priors (4), the prior concentration

does not improve much under an inverse-gamma prior on the global variance regardless of the hy-

perparameters (provided they don’t scale with n) even when ✓
0

= 0. Concentration around ✓
0

away

from zero will clearly be even worse. Hence, such a prior is not well-suited in high-dimensional

settings, confirming empirical observations documented in [10, 24]. It is also immediate that the

same concentration bound in (6) would be obtained for the giG family of priors on ⌧ .
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In [24], the authors instead recommended a half-Cauchy prior as a default choice for the global

variance (also see [10]). We consider the following general class of densities on (0,1) for ⌧ , to

be denoted F henceforth, that satisfy: (i) f(⌧)  M for all ⌧ 2 (0,1) (ii) f(⌧) > 1/M for

all ⌧ 2 (0, 1), for some constant M > 0. Clearly, F contains the half-Cauchy and exponential

families. The following result provides concentration bounds for these priors.

Theorem 3.3. Let k✓
0

k
2

= o(
p
n). If the prior f on the global parameter ⌧ belongs to the class

F above then,

C
1

e�(1��) logn  P(k✓k
2

< t
n

)  C
2

e�(1��) logn. (7)

Furthermore, if k✓
0

k
2

> t
n

, then

e�c1n log an  P(k✓ � ✓
0

k
2

< t
n

)  e�c2n log an , (8)

where a
n

= k✓
0

k
2

/t
n

> 1 and c
i

, C
i

> 0 are constants with C
1

, C
2

, c
2

depending only on M in

the definition of F and c
1

depending on M and �.

Thus (7) in Theorem 3.3 shows that the prior concentration around zero can be dramatically

improved from exponential to polynomial with a careful prior on ⌧ that can assign sufficient mass

near zero, such as the half-Cauchy prior [10, 24]. Unfortunately, as (8) shows, for signals of large

magnitude one again obtains an exponentially decaying probability. Hence, Theorem 3.3 con-

clusively shows that global shrinkage priors are simply not flexible enough for high-dimensional

problems.

Remark 3.4. The condition k✓
0

k
2

� t
n

is only used to prove the lower bound in (8). For any k✓
0

k

bounded below by a constant, we would still obtain an upper bound e�Cn

1��
logn in (8), similar to

the bound in (6).

9



3.3 Prior concentration for a class of GL priors

Proving concentration results for the GL family (2) in the general setting presents a much harder

challenge compared to Theorem 3.3 since we now have to additionally integrate over the n local

parameters  = ( 
1

, . . . , 
n

). We focus on an important sub-class in Theorem 6.4 below, namely

the exponential family for the distribution of g in (2). For analytical tractability, we additionally

assume that ✓
0

has only one non-zero entry. The interest in the exponential family arises from

the fact that normal-exponential scale mixtures give rise to the double-exponential family [32]:

✓ |  ⇠ N(0, �2

), ⇠ Exp(1/2) implies ✓ ⇠ DE(�), and hence this family of priors can be

considered as a Bayesian version of the lasso [21]. We now state a concentration result for this

class noting that a general version of Theorem 3.5 can be found in Theorem 6.4 stated in Section

6.

Theorem 3.5. Assume ✓ ⇠ GL with f 2 F and g ⌘ Exp(�) for some constant � > 0. Also

assume ✓
0

has only one non-zero entry and k✓
0

k2
2

> log n. Then, for a global constant C > 0

depending only on M in the definition of F ,

P(k✓ � ✓
0

k
2

< t
n

)  e�C

p
n. (9)

Theorem 3.5 asserts that even in the simplest deviation from the null model with only one

signal, one continues to have exponentially small concentration under an exponential prior on the

local scales. From (5) in Theorem 3.1, appropriate point mass mixture priors (1) would have

P(k✓ � ✓
0

k
2

< t
n

) � e�Ck✓0k1 under the same conditions as above, clearly showing that the wide

difference in concentration still persists.

3.4 Posterior lower bounds in normal means

We have discussed the prior concentration for a high-dimensional vector ✓ without alluding to any

specific model so far. In this section we show how prior concentration impacts posterior inference
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for the widely studied normal means problem 1 (see [6, 8, 15] and references therein):

y
i

= ✓
i

+ ✏
i

, ✏
i

⇠ N(0, 1), 1  i  n. (10)

The minimax rate s
n

for the above model is given by s2
n

= q
n

log(n/q
n

) when ✓
0

2 l
0

[q
n

;n].

For this model [6] recently established that for point mass priors for ✓ with ⇡ ⇠ beta(1,n +

1) and g
✓

having Laplace like or heavier tails, the posterior contracts at the minimax rate, i.e.,

E
n,✓0P(k✓ � ✓

0

k
2

< Ms
n

| y) ! 1 for some constant M > 0. Thus we see that carefully chosen

point mass priors are indeed optimal2. However not all choices for g
✓

lead to optimal proceedures;

[6] also showed that if g
✓

is instead chosen to be standard Gaussian, the posterior does not contract

at the minimax rate, i.e., one could have E
n,✓0P(k✓ � ✓

0

k
2

< s
n

| y) ! 0 for signals of sufficiently

large magnitude. This result is particularly striking given the routine choice of Gaussian for g
✓

in

Bayesian variable selection and thus clearly illustrates the need for careful prior choice in high

dimensions.

To establish such a posterior lower-bound result, [6] showed that given a fixed sequence t
n

, if

there exists a sequence r
n

(r
n

> t
n

) such that

P(k✓ � ✓
0

k
2

< t
n

)

P(k✓ � ✓
0

k
2

< r
n

)

= o(e�r

2
n
), (11)

then P(k✓ � ✓
0

k
2

< t
n

| y) ! 0. This immediately shows the importance of studying the

prior concentration. Intuitively, (11) would be satisfied when the prior mass of the bigger ball

k✓ � ✓
0

k
2

< r
n

is almost entirely contained in the annulus with inner radius t
n

and outer radius r
n

,

so that the smaller ball k✓ � ✓
0

k
2

< t
n

barely has any prior mass compared to the bigger ball. As

an illustrative example, in the i.i.d. N(0, 1) example with t
n

= s
n

, setting r
n

=

p
n would satisfy

(11) above, proving that i.i.d. N(0, 1) priors are sub-optimal. Our goal is to investigate whether a

similar phenomenon persists for global-local priors in light of the concentration bounds developed
1Although we study the normal means problem, the ideas and results in this section are applicable to other models

such as non-parametric regression and factor models.
2It is important that the hyper parameter for ⇡ depends on n. We do not know if the result holds without this
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in Theorems 3.3 and 6.4.

As in Section 3.2, we first state our posterior lower bound result for the case where there is

only a global parameter.

Theorem 3.6. Suppose we observe y ⇠ N
n

(✓
0

, I
n

) and (10) is fitted with a GL prior on ✓ such

that  
j

= 1 for all j and the prior f on the global parameter ⌧ lies in F . Assume ✓
0

2 l
0

[q
n

;n]

where q
n

/n ! 0 and k✓
0

k
2

> s
n

, with s2
n

= q
n

log(n/q
n

) being the minimax squared error loss

over l
0

[q
n

;n]. Then, E
n,✓0P(k✓ � ✓

0

k
2

 s
n

| y) ! 0.

Proof. Without loss of generality, assume k✓
0

k
2

= o(
p
n), since the posterior mass with a prior

centered at the origin would be smaller otherwise. Choosing t
n

= s
n

, r
n

to be a sequence such that

t
n

< r
n

< k✓
0

k
2

and resorting to the two-sided bounds in Theorem 3.3, the ratio in (11) is smaller

than (t
n

/r
n

)

n, and hence er
2
n
(t

n

/r
n

)

n ! 0 since r
n

 k✓
0

k
2

= o(
p
n).

Theorem 3.6 states that a GL prior with only a global scale is sub-optimal if k✓
0

k
2

> s
n

.

Observe that in the complementary region {k✓
0

k
2

 s
n

}, the estimator ˆ✓ ⌘ 0 attains squared error

in the order of q
n

log(n/q
n

), implying the condition k✓
0

k
2

> s
n

is hardly stringent.

Next, we state a result for the sub-class of GL priors as in Theorem 6.4, i.e., when g has an

exponential distribution leading to a double-exponential distribution marginally.

Theorem 3.7. Suppose we observe y ⇠ N
n

(✓
0

, I
n

) and the model in (10) is fitted with a GL prior

on ✓ such that f lies in F and g ⌘ Exp(�) for some constant � > 0. Assume ✓
0

2 l
0

[q
n

;n] with

q
n

= 1 and k✓
0

k2
2

/ log n ! 1. Then, E
n,✓0P(k✓ � ✓

0

k
2


p
log n | y) ! 0.

A proof of Theorem 3.7 is deferred to Section 6. From [6], appropriate point mass mixture pri-

ors would assign increasing mass with n to the same neighborhood in Theorem 3.7. Hence, many

of the shrinkage priors used in practice are sub-optimal in high-dimensional applications, even in

the simplest deviation from the null model with only one moderately sized signal. Although Theo-

rem 3.7 is stated and proved for g having an exponential distribution (which includes the Bayesian

lasso [21]), we conjecture that the conclusions would continue to be valid if one only assumes g to
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have exponential tails plus some mild conditions on the behavior near zero. However, the assump-

tions of Theorem 3.7 precludes the case when g has polynomial tails, such as the horseshoe [5] and

generalized double Pareto [2]. One no longer obtains tight bounds on the prior concentration for g

having polynomial tails using the current techniques and it becomes substantially complicated to

study the posterior.

Another important question beyond the scope of the current paper should concern the behavior

of the posterior when one plugs in an empirical Bayes estimator of the global parameter ⌧ . How-

ever, we show below that the “optimal” sample-size dependent plug-in choice ⌧
n

= c2/ log n (so

that marginally ✓
j

⇠ DE(c/
p
log n) ) for the lasso estimator [20] produces a sub-optimal posterior:

Theorem 3.8. Suppose we observe y ⇠ N
n

(✓
0

, I
n

) and (10) is fitted with a GL prior on ✓ such that

⌧ is deterministically chosen to be ⌧
n

, i.e., f ⌘ �
⌧n for a non-random sequence ⌧

n

and g ⌘ Exp(�)

for some constant � > 0. Assume ✓
0

2 l
0

[q
n

;n] with q
n

(log n)2 = o(n) and ⌧
n

= c/ log n is used

as the plug-in choice. Then, E
n,✓0P(k✓ � ✓

0

k
2

 s
n

| y) ! 0, with s2
n

= q
n

log(n/q
n

) being the

minimax squared error loss over l
0

[q
n

;n].

A proof of Theorem 3.8 can be found in Section 6. Note that a slightly stronger assumption on

the sparsity allows us to completely obviate any condition on ✓
0

in this case. Also, the result can

be generalized to any ⌧
n

if q
n

log n/⌧
n

= o(n).

4. A NEW CLASS OF SHRINKAGE PRIORS

The results in Section 3 necessitate the development of a general class of continuous shrinkage

priors with improved concentration around sparse vectors. To that end, let us revisit the global-local

specification (2). After integrating out the local scales  
j

’s, (2) can be equivalently represented as

a global scale mixture of a kernel K(·),

✓
j

i.i.d.⇠ K(· , ⌧), ⌧ ⇠ g, (12)

where K(x) =

R
 �1/2�(x/

p
 )g( )d is a symmetric unimodal density (or kernel) on R and

K(x, ⌧) = ⌧�1/2K(x/
p
⌧). For example,  

j

⇠ Exp(1/2) corresponds to a double exponential ker-

13



nel K ⌘ DE(1), while  
j

⇠ IG(1/2, 1/2) results in a standard Cauchy kernel K ⌘ Ca(0, 1). These

traditional choices lead to a kernel which is bounded in a neighborhood of zero, and the resulting

global-local procedure (12) with a single global parameter ⌧ doesn’t attain the desired concentra-

tion around sparse vectors as documented in Theorem 3.5, leading to sub-optimal behavior of the

posterior in Theorem 3.7.

However, if one instead uses a half Cauchy prior  1/2

j

⇠ Ca
+

(0, 1), then the resulting horse-

shoe kernel [4, 5] is unbounded with a singularity at zero. This phenomenon coupled with tail

robustness properties leads to excellent empirical performances of the horseshoe. However, the

joint distribution of ✓ under a horseshoe prior is understudied. One can imagine that it achieves

a higher prior concentration around sparse vectors compared to common shrinkage priors since

the singularity at zero potentially allows most of the entries to be concentrated around zero with

the heavy tails ensuring concentration around the relatively small number of signals. However,

the polynomial tails of  
j

present a hindrance in obtaining tight bounds using our techniques. We

hope to address the polynomial tails case in details elsewhere, though based on strong empirical

performance, we conjecture that the horseshoe leads to the optimal posterior contraction in a much

broader domain compared to the Bayesian lasso and other common shrinkage priors. The normal-

gamma scale mixtures [13] and the generalized double Pareto prior [2] follow the same philosophy

and should have similar properties.

The above class of priors rely on obtaining a suitable kernel K through appropriate normal scale

mixtures. In this article, we offer a fundamentally different class of shrinkage priors that alleviate

the requirements on the kernel, while having attractive theoretical properties. In particular, our

proposed class of kernel-Dirichlet (kD) priors replaces the single global scale ⌧ in (12) by a vector

of scales (�
1

⌧, . . . ,�
n

⌧), where � = (�
1

, . . . ,�
n

) is constrained to lie in the (n � 1) dimensional

simplex Sn�1:

✓
j

| �
j

, ⌧ ⇠ K(· ,�
j

⌧), (�, ⌧) 2 Sn�1 ⌦ R+, (13)

where K is any symmetric (about zero) unimodal density that can be represented as scale mixture

14



of normals [32]. While previous shrinkage priors in the literature obtain marginal behavior similar

to the point mass mixture priors (1), our construction aims at resembling the joint distribution of ✓

under a two-component mixture prior. Constraining � on Sn�1 restrains the “degrees of freedom”

of the �
j

’s, offering better control on the number of dominant entries in ✓. In particular, letting

� ⇠ Dir(a, . . . , a) for a suitably chosen a allows (13) to behave like (1) jointly, forcing a large

subset of (✓
1

, . . . , ✓
n

) to be simultaneously close to zero with high probability.

We focus on the Laplace kernel from now on for concreteness, noting that all the results stated

below can be generalized to other choices. The corresponding hierarchical prior

✓
j

⇠ DE(�
j

⌧), � ⇠ Dir(a, . . . , a), ⌧ ⇠ g (14)

is referred to as a Dirichlet Laplace prior, denoted DL
a

(⌧). In the following Theorem 4.1, we

establish the improved prior concentration of the DL prior. For sake of comparison with the

global-local priors in Section 3.3, we assume the same conditions as in Theorem 3.5; a general

version can be found in Section 6.

Theorem 4.1. Assume ✓ ⇠ DL
a

(⌧) as in (14) with a = 1/n and ⌧ ⇠ Exp(�) for some � > 0.

Also assume ✓
0

has only one non-zero entry and k✓
0

k2
2

= c log n. Also, recall the sequence t
n

in

(3). Then, for a constant C depending only on � on �,

P (k✓ � ✓
0

k < t
n

) � exp{�C
p

log n}. (15)

From (5) in Theorem 3.1, appropriate point mass mixtures would attain exactly the same con-

centration as in (15), showing the huge improvement in concentration compared to global-local

priors. This further establishes the role of the dependent scales �, since in absence of �, a DE(⌧)

prior with ⌧ ⇠ Exp(�) would lead to a concentration smaller than e�C

p
n (see Theorem 3.5).

To further understand the role of �, we undertake a study of the marginal properties of ✓
j

integrating out �
j

. Clearly, the marginal distribution of �
j

is Beta(a, (n � 1)a). Let WG(↵, �)

15



denote a wrapped gamma distribution with density function

f(x;↵, �) / |x|↵�1 e��|x|, x 2 R.

The results are summarized in Proposition 4.2 below.

Proposition 4.2. If ✓ | �, ⌧ ⇠ DL

a

(⌧) and � ⇠ Dir(a, . . . , a), then the marginal distribution of

✓
j

given ⌧ is unbounded with a singularity at zero for any a < 1. Further, in the special case

a = 1/n, the marginal distribution is a wrapped Gamma distribution WG(1/n, ⌧�1

).

Thus, marginalizing over �, we obtain an unbounded kernel K (similar to the horseshoe). Since

the marginal density of ✓
j

| ⌧ has a singularity at 0, it assigns a huge mass at zero while retaining

exponential tails, which partly explains the improved concentration. A proof of Proposition 4.2

can be found in the appendix.

There is a recent frequentist literature on including a local penalty specific to each coefficient.

The adaptive Lasso [31, 35] relies on empirically estimated weights that are plugged in. [18]

instead propose to sample the penalty parameters from a posterior, with a sparse point estimate

obtained for each draw. These approaches do not produce a full posterior distribution but focus on

sparse point estimates.

4.1 Posterior computation

The proposed class of DL priors leads to straightforward posterior computation via an efficient

data augmented Gibbs sampler. Note that the DL
a

(⌧) prior (14) can be equivalently represented as

✓
j

⇠ N(0, 
j

�2

j

⌧ 2),  
j

⇠ Exp(1/2), � ⇠ Dir(a, . . . , a).

In the general DL
a

(⌧) setting, we assume a gamma(�, 1/2) prior on ⌧ with � = na. In the special

case when a = 1/n, the prior on ⌧ reduces to an Exp(1/2) prior consistent with the statement of

Theorem 4.1.

We detail the steps in the normal means setting but the algorithm is trivially modified to accom-
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modate normal linear regression, robust regression with heavy tailed residuals, probit models, lo-

gistic regression, factor models and other hierarchical Gaussian cases. To reduce auto-correlation,

we rely on marginalization and blocking as much as possible. Our sampler cycles through (i)

✓ |  ,�, ⌧, y, (ii)  | �, ⌧, ✓, (iii) ⌧ | �, ✓ and (iv) � | ✓. We use the fact that the joint posterior of

( ,�, ⌧) is conditionally independent of y given ✓. Steps (ii) - (iv) together gives us a draw from

the conditional distribution of ( ,�, ⌧) | ✓, since

[ ,�, ⌧ | ✓] = [ | �, ⌧, ✓][⌧ | �, ✓][� | ✓].

Steps (i) – (iii) are standard and hence not derived. Step (iv) is non-trivial and we develop an

efficient sampling algorithm for jointly sampling �. Usual one at a time updates of a Dirichlet

vector leads to tremendously slow mixing and convergence, and hence the joint update in Theorem

4.3 is an important feature of our proposed prior.

Theorem 4.3. The joint posterior of � | ⌧ has the same distribution as (T
1

/T, . . . , T
n

/T ), where

T
j

are independently distributed according to a giG(a�1, 1, 2|✓
j

|) distribution, and T =

P
n

j=1

T
j

.

Proof. We first state a result from the theory of normalized random measures (see, for example,

(36) in [17]). Suppose T
1

, . . . , T
n

are independent random variables with T
j

having a density f
j

on

(0,1). Let �
j

= T
j

/T with T =

P
n

j=1

T
j

. Then, the joint density f of (�
1

, . . . ,�
n�1

) supported

on the simplex Sn�1 has the form

f(�
1

, . . . ,�
n�1

) =

Z 1

t=0

tn�1

nY

j=1

f
j

(�
j

t)dt, (16)

where �
n

= 1�
P

n�1

j=1

�
j

. Integrating out ⌧ , the joint posterior of � | ✓ has the form

⇡(�
1

, . . . ,�
n�1

| ✓) /
nY

j=1


�a�1

j

1

�
j

� Z 1

⌧=0

e�⌧/2⌧��n�1e�
Pn

j=1 |✓j |/(�j⌧)d⌧. (17)

17



Setting f
j

(x) / 1

x

� e�|✓j |/xe�x/2 in (16), we get

f(�
1

, . . . ,�
n�1

) =


nY

j=1

1

��
j

� Z 1

t=0

e�t/2tn�1�n�e�
Pn

j=1 |✓j |/(�jt)dt. (18)

We aim to equate the expression in (18) with the expression in (17). Comparing the exponent of

�
j

gives us � = 2 � a. The other requirement n � 1 � n� = � � n � 1 is also satisfied, since

� = na. The proof is completed by observing that f
j

corresponds to a giG(a � 1, 1, 2|✓
j

|) when

� = 2� a.

The summary of each step are finally provided below.

(i) To sample ✓ |  ,�, ⌧, y, draw ✓
j

independently from a N(µ
j

, �2

j

) distribution with

�2

j

= {1 + 1/( 
j

�2

j

⌧ 2)}�1, µ
j

= {1 + 1/( 
j

�2

j

⌧ 2)}�1y.

(ii) The conditional posterior of  | �, ⌧, ✓ can be sampled efficiently in a block by independently

sampling  
j

| �, ✓ from an inverse-Gaussian distribution iG(µ
j

,�) with µ
j

= �
j

⌧/|✓
j

|,� =

1.

(iii) Sample the conditional posterior of ⌧ | �, ✓ from a giG(��n, 1, 2
P

n

j=1

|✓
j

|/�
j

) distribution.

(iv) To sample � | ✓, draw T
1

, . . . , T
n

independently with T
j

⇠ giG(a � 1, 1, 2|✓
j

|) and set �
j

=

T
j

/T with T =

P
n

j=1

T
j

.

5. SIMULATION STUDY

Since the concentration results presented here are non-asymptotic in nature, we expect the theoreti-

cal findings to be reflected in finite-sample performance. In particular, we aim to study whether the

improved concentration of the proposed Dirichlet Laplace (DL
1/n

) priors compared to the Bayesian

lasso (BL) translate empirically. As illustration, we show the results from a replicated simulation

study with various dimensionality n and sparsity level q
n

. In each setting, we have 100 replicates

of a n-dimensional vector y sampled from a N
n

(✓
0

, I
n

) distribution with ✓
0

having q
n

non-zero
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entries which are all set to be a constant A > 0. We chose two values of n, namely n = 100, 200.

For each n, we let q
n

= 5, 10, 20% of n and choose A = 7, 8. This results in 12 simulation settings

in total. The simulations were designed to mimic the setting in Section 3 where ✓
0

is sparse with a

few moderate-sized coefficients.

Table 1: Squared error comparison over 100 replicates

n 100 200

qn 5 10 20 5 10 20

A 7 8 7 8 7 8 7 8 7 8 7 8

BL 33.05 33.63 49.85 50.04 68.35 68.54 64.78 69.34 99.50 103.15 133.17 136.83
DL

1/n

8.20 7.19 17.29 15.35 32.00 29.40 16.07 14.28 33.00 30.80 65.53 59.61
LS 21.25 19.09 38.68 37.25 68.97 69.05 41.82 41.18 75.55 75.12 137.21 136.25

EBMed 13.64 12.47 29.73 27.96 60.52 60.22 26.10 25.52 57.19 56.05 119.41 119.35
PM 12.15 10.98 25.99 24.59 51.36 50.98 22.99 22.26 49.42 48.42 101.54 101.62
HS 8.30 7.93 18.39 16.27 37.25 35.18 15.80 15.09 35.61 33.58 72.15 70.23

The squared error loss corresponding to the posterior median averaged across simulation repli-

cates is provided in Table 1. To offer further grounds for comparison, we have also tabulated the

results for Lasso (LS), Empirical Bayes median (EBMed) as in [15] 3, posterior median with a

point mass prior (PM) as in [6] and the posterior median corresponding to the horseshoe prior [5].

For the fully Bayesian analysis using point mass mixture priors, we use a complexity prior on the

subset-size, ⇡
n

(s) / exp{�s log(2n/s)} with  = 0.1 and independent standard Laplace priors

for the non-zero entries as in [6]. 4 5

Even in this succinct summary of the results, a wide difference between the Bayesian Lasso

and the proposed DL
1/n

is observed in Table 1, vindicating our theoretical results. The horseshoe

performs similarly as the DL
1/n

. The superior performance of the DL
1/n

prior can be attributed

to its strong concentration around the origin. However, in cases where there are several relatively
3The EBMed procedure was implemented using the package [16].
4Given a draw for s, a subset S of size s is drawn uniformly. Set ✓j = 0 for all j /2 S and draw ✓j , j 2 S i.i.d.

from standard Laplace.
5The beta-bernoulli priors in (1) induce a similar prior on the subset size.
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small signals, the DL
1/n

prior can shrink all of them towards zero. In such settings, depending on

the practitioner’s utility function, the singularity at zero can be “softened” using a DL
a

prior for a

smaller value of a. Based on empirical performance and computational efficiency, we recommend

a = 1/2 as a robust default choice. The computational gain arises from the fact that in this case,

the distribution of T
j

in (iv) turns out to be inverse-Gaussian (iG), for which exact samplers are

available.

Table 2: Squared error comparison over 100 replicates

n 1000

A 2 3 4 5 6 7

BL 299.30 385.68 424.09 450.20 474.28 493.03
HS 306.94 353.79 270.90 205.43 182.99 168.83

DL
1/n

368.45 679.17 671.34 374.01 213.66 160.14
DL

1/2

267.83 315.70 266.80 213.23 192.98 177.20

For illustration purposes, we choose a simulation setting akin to an example in [5], where one

has a single observation y from a n = 1000 dimensional N
n

(✓
0

, I
n

) distribution, with ✓
0

[1 : 10] =

10, ✓
0

[11 : 100] = A, and ✓
0

[101 : 1000] = 0. We the vary A from 2 to 7 and summarize the

squared error averaged across 100 replicates in Table 2. We only compare the Bayesian shrinkage

priors here; the squared error for the posterior median is tabulated. Table 2 clearly illustrates the

need for prior elicitation in high dimensions according to the need, shrinking the noise vs. signal

detection.

6. PROOFS OF CONCENTRATION RESULTS IN SECTION 3

In this section, we develop non-asymptotic bounds to the prior concentration which are subse-

quently used to prove the posterior lower bound results. An important tool used throughout is a

general version of Anderson’s lemma [30], providing a concentration result for multivariate Gaus-

sian distributions:

20



Lemma 6.1. Suppose ✓ ⇠ N
n

(0,⌃) with ⌃ p.d. and ✓
0

2 Rn. Let k✓
0

k2H = ✓T
0

⌃

�1✓
0

. Then, for

any t > 0,

e�
1
2 k✓0k2HP(k✓k

2

 t/2)  P(k✓ � ✓
0

k
2

< t)  e�
1
2 k✓0k2HP(k✓k

2

< t).

It is well known that among balls of fixed radius, a zero mean multivariate normal distribution

places the maximum mass on the ball centered at the origin. Lemma 6.1 provides a sharp bound

on the probability of shifted balls in terms of the centered probability and the size of the shift,

measured via the RKHS norm k✓
0

k2H.

For GL shrinkage priors of the form (2), given  = ( 
1

, . . . , 
n

)

T and ⌧ , the elements of ✓ are

conditionally independent with ✓ |  , ⌧ ⇠ N
n

(0,⌃) with ⌃ = diag( 
1

⌧, . . . , 
n

⌧). Hence we can

use Lemma 6.1 to obtain

e�1/(2⌧)

Pn
j=1 ✓

2
0j/ j P(k✓k

2

< t
n

/2 |  , ⌧)  P(k✓ � ✓
0

k
2

 t
n

|  , ⌧)

 e�1/(2⌧)

Pn
j=1 ✓

2
0j/ j P(k✓k

2

< t
n

|  , ⌧). (19)

Letting X
j

= ✓2
j

, X
j

’s are conditionally independent given (⌧, ) with X
j

having a density f(x |

⌧, ) = D/(
p
⌧ 

j

x)e�x/(2⌧ j) on (0,1), where D = 1/(
p
2⇡). Hence, with w

n

= t2
n

,

P(k✓k
2

< t
n

|  , ⌧) = Dn

Z

P
xjwn

nY

j=1

1p
x
j

⌧ 
j

e�xj/(2⌧ j)dx. (20)

For sake of brevity, we use {
P

x
j

 w
n

} in (20) and all future references to denote the region

{x : x
j

� 0 8 j = 1, . . . , n,
P

n

j=1

x
j

 w
n

}. To estimate two-sided bounds for the marginal

concentration P(k✓ � ✓
0

k
2

 t
n

), we need to combine (19) & (20) and integrate out  and ⌧

carefully. We start by proving Theorem 3.2 & Theorem 3.3 where one only needs to integrate out

⌧ .
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6.1 Proof of Theorem 3.2

In (20), set  
j

= 1 for all j, recall D = 1/
p
2⇡ and w

n

= t2
n

, and integrate over ⌧ to obtain,

P(k✓k
2

 t
n

) = Dn

Z 1

⌧=0

f(⌧)

 Z

P
xjwn

nY

j=1

1

p
x
j

⌧
e�xj/(2⌧)dx

�
d⌧. (21)

Substituting f(⌧) = c⌧�(1+↵)e��/⌧ with c = �↵/�(↵) and using Fubini’s theorem to interchange

the order of integration between x and ⌧ , (21) equals

cDn

Z

P
xjwn

nY

j=1

1

p
x
j

 Z 1

⌧=0

⌧�(1+n/2+↵)e�
1
2⌧ (2�+

P
xj)d⌧

�
dx

= cDn

2

n/2+↵

�(n/2 + ↵)

Z

P
xjwn

1

(2� +

P
x
j

)

n/2+↵

nY

j=1

1

p
x
j

dx

= cDn

2

n/2+↵wn/2

n

�(n/2 + ↵)

Z

P
xj1

1

(2� + w
n

P
x
j

)

n/2+↵

nY

j=1

1

p
x
j

dx. (22)

We now state the Dirichlet integral formula (4.635 in [12]) to simplify a class of integrals as above

over the simplex �

n�1:

Lemma 6.2. Let h(·) be a Lebesgue integrable function and ↵
j

> 0, j = 1, . . . , n. Then,

Z

P
xj1

h
�X

x
j

� nY

j=1

x
↵j�1

j

dx
1

. . . dx
n

=

Q
n

j=1

�(↵
j

)

�

�P
n

j=1

↵
j

�
Z

1

t=0

h(t) t(
P
↵j)�1dt.

Lemma 6.2 follows simply by noting that the left hand side is Eh(
P

n

j=1

X
j

) up to normalizing

constants where (X
1

, . . . , X
n

) ⇠ Diri(↵
1

, . . . ,↵
n

, 1), so that
P

n

j=1

X
j

⇠ Beta(
P
↵
j

, 1). Such

probabilistic intuitions will be used later to reduce more complicated integrals over a simplex to a

single integral on (0, 1).

Lemma 6.2 with h(t) = 1/(2� + w
n

t)n/2+↵ applied to (22) implies

P(k✓k
2

 t
n

) = cDn

2

n/2+↵wn/2

n

�(n/2 + ↵)
�(1/2)n

�(n/2)

Z
1

t=0

tn/2�1

(2� + w
n

t)n/2+↵
dt. (23)

Substituting D = 1/
p
2⇡, bounding (2� + w

n

t)n/2+↵ � (2�)↵+1

(2� + w
n

t)n/2�1, and letting
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w̃
n

= w
n

/(2�), (23) can be bounded above by

�(n/2 + ↵)

�(n/2)�(↵)(2�)↵+1

w̃n/2

n

Z
1

t=0

tn/2�1

(1 + w̃
n

t)n/2�1

dt  w
n

�(n/2 + ↵)

�(n/2)�(↵)(2�)↵+1

✓
w̃

n

1 + w̃
n

◆
n/2�1

,

where the second inequality above uses t/(a + t) is an increasing function in t > 0 for fixed

a > 0. By definition, w
n

= n� for 0 < � < 1 and hence wn�(n/2+↵)

�(n/2)�(↵)(2�)

↵+1 can be bounded

above by cC1 logn. Also, using (1 � x)1/x  e for all x > 0, {w̃
n

/(1 + w̃
n

)}n/2�1 can be bound

above by e�C2n/wn
= e�C2n

1�� . Hence the overall bound is e�Cn

1�� for some appropriate constant

C > 0.

6.2 Proof of Theorem 3.3

We start with the upper bound in (7). The steps are similar as above and hence only a sketch is

provided. Bounding f(⌧)  M and interchanging order of integrals in (21),

P(k✓k
2

 t
n

)  MDn

2

n/2�1

�(n/2� 1)w
n

Z

P
xj1

1

(

P
x
j

)

n/2�1

nY

j=1

1

p
x
j

dx. (24)

Invoking Lemma 6.2 with h(t) = (1/t)n/2�1 in (24), the upper bound in (7) is proved:

MDn

2

n/2�1

�(n/2� 1)w
n

�(1/2)n

�(n/2)

Z
1

x=0

xn/2�1/xn/2�1dx = (M/2)
w

n

n/2� 1

= C
2

n�(1��).

We turn towards proving the lower bound to the centered concentration in (7). Recalling that

f(⌧) � 1/M on (0, 1) for f 2 F , and interchanging integrals in (21), we have, with K = 1/M ,

P(k✓k
2

 t
n

) � KDn

Z

P
xjwn

nY

j=1

1

p
x
j

 Z
1

⌧=0

⌧�n/2e�
P

xj/(2⌧)d⌧

�
dx. (25)

We state Lemma 6.3 to lower bound the inner integral over ⌧ ; a proof can be found in the Appendix.

Recall
R1
⌧=0

⌧�n/2e�an/(2⌧)d⌧ = �(n/2� 1)(2/a
n

)

n/2�1. Lemma 6.3 shows that the same integral

over (0, 1) is of the same order when a
n

- n.

Lemma 6.3. For a sequence a
n

 n/(2e),
R

1

⌧=0

⌧�n/2e�an/(2⌧)d⌧ � (2/a
n

)

n/2�1

�(n/2 � 1)⇠
n

,

23



where ⇠
n

" 1 with (1� ⇠
n

)  D/
p
n for some constant D > 0.

Clearly
P

x
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n

and hence we can apply Lemma 6.3 in (25) to get
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The rest of the proof proceeds exactly as in the upper bound case from (24) onwards.

Finally, we combine Anderson’s inequality (19) with (20) (with  
j

= 1 for all j in this case) to

bound the non-centered concentrations in (8). For the upper bound, we additionally use f(⌧)  M

for all ⌧ to obtain
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In the above display, (28) - (29) follows from applying Lemma 6.2 with h(t) = 1/(k✓
0

k2
2

+

w
n

t)n/2�1. Simplifying constants in (29) as before and using t/(a+ t) is an increasing function in

t > 0 for fixed a > 0, we complete the proof by bounding (29) above by
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The right hand side of the above display can be bounded above by e�cn log an for some constant

c > 0. Remark (3.4) readily follows from the above display; we didn’t use the condition on k✓
0

k
2

so far.

For the lower bound on the prior concentration in the non-centered case, we combine Ander-

son’s inequality (19) in the reverse direction along with (20). We then use the same trick as in the

centered case to restrict the integral over ⌧ to (0, 1) in (30). Note that the integral over the x’s is
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over
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x
j

 v
n

with v
n

= t2
n

/4 as a consequence of (19). Hence,

P(k✓ � ✓
0

k
2

 t
n

) � KDn

Z

P
xjvn

nY

j=1

1

p
x
j

 Z
1

⌧=0

⌧�n/2e�[k✓0k22+
P

xj ]/(2⌧)d⌧

�
dx. (30)

Noting that k✓
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= o(n), we can invoke Lemma 6.3 to lower bound the

inner integral over ⌧ by ⇠
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n/2�1 and proceed to obtain the same

expressions as in (28) & (29) with M replaced by K⇠
n

and w
n

by v
n

. The proof is then completed

by observing that the resulting lower bound can be further bounded below as follows:
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where the last inequality uses t
n

 k✓
0

k
2

so that k✓
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k2
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+ v
n

 2 k✓
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k2
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.

To prove Theorem 3.5, we state and prove a more general result on concentration of GL priors.

Theorem 6.4. Assume ✓ ⇠ GL with f 2 F and g ⌘ Exp(�) for some constant � > 0. Also assume

✓
0

has only one non-zero entry. Let w
n

= t2
n

. Then, for a global constant C
1

> 0 depending only

on M in the definition of F ,
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Let v
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= O(

p
n). Then, for k✓
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where c
1

, d
2

, C
2

are positive global constants with c
1

� 2 and C
2

depends only on M in the

definition of F .
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6.3 Proof of Theorem 6.4

Without loss of generality, we assume g to be the Exp(1) distribution since the rate parameter

� can be absorbed into the global parameter ⌧ with the resulting distribution still in F . Also,

assume the only non-zero entry in ✓
0

is ✓
01

, so that k✓
0

k2
2

= |✓
01

|2. The steps of the proof follow

the same structure as in Theorem 3.3, i.e., using Anderson’s inequality to bound the non-centered

concentration given  , ⌧ by the centered concentration as in (19) and exploiting the properties of

F to ensure that the bounds are tight. A substantial additional complication arises in integrating

out  in this case, requiring involved analysis.

We start with the upper bound (31). Combining (19) & (20), and bounding f(⌧)  M yields:
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(33)

Comare (33) with (28). The crucial difference in this case is that the inner integral over the simplex
P

n

j=1

x
j

 1 is no longer a function of
P

n

j=1

x
j

, rendering Lemma 6.2 inapplicable. An important

technical contribution of this paper in Lemma 6.5 below is that complicated multiple integrals over

the simplex as above can be reduced to a single integral over (0, 1):

Lemma 6.5. Let ↵
j

= 1/2 for j = 1, . . . , n and q
j

, j = 0, 1, . . . , n be positive numbers. Then,
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)
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dx.

A proof of Lemma 6.5 can be found in the Appendix. We didn’t find any previous instance

of Lemma 6.5 though a related integral with n/2 in the exponent in the denominator appears in
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[12]. Our technique for the proof, which utilizes a beautiful identity found in [7] can be easily

generalized to any ↵
j

and other exponents in the denominator.

Aplying Lemma 6.5 with q
0

= k✓
0

k2
2

/ 
1

and q
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to evaluate the inner integral over x,
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noting that (n/2� 1)Dn
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So, at this point, we are down from the initial (2n + 1) integrals to (n + 1) integrals. Next,

using g( 
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Using a standard identity and an upper bound for the complementary error function erfc(z) =
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Hence, the expression in (35) can be bounded above by
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Let us aim to bound the inner integral over x in (36). We upper bound (1�x) in the numerator by 1,
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term in the numerator and denominator to get
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Substituitng this in (36), we finally obtain:
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where C
1

> 0 is a global constant (depending only on M ). (31) clearly follows from (37).

Lower bound: We proceed to obtain a lower bound to P(k✓ � ✓
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) similar to (37) under

additional assumptions on r
n

as in the statement of Theorem 6.4. To that end, note that in the proof

of the upper bound here, we used only two inequalities until (34): (i) Anderson’s inequality in

(19) and (ii) upper bounding f(⌧) by M . As in the proof of the lower bound in Theorem 3.3, we

obtain a lower bound similar to the expression in (34) by (i) using Anderson’s inequality (19) in
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However, unlike Theorem 3.3, we cannot directly resort to Lemma 6.3 since a
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Note the inner integral over x is restricted to (1/2, 3/4). Now,
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We use a lower bound on the erfc function (see A.8 in the Appendix for a proof) which states that
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for n large. Substituting all these in (42), we finally obtain:
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where C
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> 0 is a global constant depending only on K in the definition of F and ⇠
n

" 1 with

1� ⇠
n

 D/
p
n for some constant D > 0. We only required c

1

> 2 so far. Since k✓
0

k
2

� 1/
p
n,

choosing c
1

and c
3

to be sufficiently large constants, (39) can always be satisfied. The proof of (32)

clearly follows from (43), since ⇠
n

v
n

/(n/2� 1)

q
vn

vn+k✓0k22
can be bounded below by e�c4

p
n.

6.4 Proof of Theorem 3.7

Let m
n

= (n � 3)/2. We set t
n

= s
n

, where s
n

is the minimax rate corresponding to q
n

= 1, so

that w
n

= s2
n

= log n. Also, let k✓
0

k2
2

= ⇡w
n

u2

n

, where u
n

is a slowly increasing sequence; we

set u
n

= log(log n) for future references. Finally let v
n

= r2
n

/4 =

p
m

n

. With these choices, we

proceed to show that (11) holds.

We first simplify (37) further. The function x ! x/x(x + a) monotonically increases from 0

to 1 for any a > 0. Thus, for any T
n

> 0,
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n
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1
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e� 1d 
1

+

Z 1

 1=Tn

e� 1d 
1


✓

T
n

T
n

+ u2

n

◆
mn

+ e�Tn . (44)

We choose an appropriate T
n

which gives us the necessary bound, namely T
n

= u
n

p
m

n

. Then,

using the fact that (1� x)1/x  e�1 for all x 2 (0, 1), we have

✓
T
n

T
n

+ u2

n

◆
mn

=

✓ p
m

np
m

n

+ u
n

◆
mn

=

✓
1� u

np
m

n

+ u
n

◆
mn

 e�mnun/(
p
mn+un)  e�un

p
mn/2,

where for the last part used that e�1/x is an increasing function and
p
m

n

+ u
n

 2

p
m

n

. Thus,
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substituting T
n

in (44) yields, for a global constant C
1

> 0,

P(k✓ � ✓
0

k
2

 s
n

)  C
1

w
n

(n/2� 1)

r
w

n

k✓
0

k2
2

e�un
p
mn/2. (45)

Next, again using the fact that x ! x/x(x+a) is monotonically increasing, and choosing c
2

= 1,

we simplify the lower bound (43). Observe

Z 1

 1=c1k✓0k2

 mn
1�

 
1

+ k✓
0

k2
2

/(⇡v
n

)

 
mn

e� 1d 
1

�
✓

v
n

v
n

+ C

◆
mn

e�c1k✓0k22 ,

for some constant C > 0. Finally, using (1 � x)1/x � e�2 for all x 2 (0, 1/2) and e�1/x is an

increasing function in x > 0, we have,

✓
v
n

v
n

+ C

◆
mn

� e�
p
mn/2.

Hence, the integral is bounded below by e�(

p
mn+c1k✓0k22)/2, resulting in

P(k✓ � ✓
0

k
2

 r
n

) � C
2

⇠
n

v
n

(n/2� 1)

r
v
n

v
n

+ k✓
0

k2
2

e�(

p
mn+c1k✓0k22)/2. (46)

Thus, finally, noting that u
n

! 1,

P(||✓ � ✓
0

||
2

< s
n

)

P(||✓ � ✓
0

||
2

< r
n

)

⇥ er
2
n  D

w3/2

n

v
n

eC(

p
mn+

p
n+k✓0k22) e�un

p
mn/2 ! 0,

where C,D > 0 are constants.
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6.5 Proof of Theorem 3.8

As before, we assume � = 1 w.l.g., since it can be absorbed in the constant appearing the sequence

⌧
n

otherwise. As in the proof of Theorem 3.7, combine (19) & (20) to obtain

P(k✓ � ✓
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n

)  Dn⌧�n/2

n
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g( )
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P
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x
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p
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w
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x
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j

◆
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�
dx,

where w
n

= t2
n

. Using the fact
R1
0

1p
x

exp

�
�
�
a

x

+ x
� 

dx =

p
⇡e�2

p
a, we obtain
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0

k < t
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)
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n
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n
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p
x
j

exp

⇢
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x
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�
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Z

P
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nY
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1

p
x
j

dx =
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n

⌧
n

◆
n/2

e�
p
2k✓0k1p

⌧n
�(1/2)n

�(n/2 + 1)

, (47)

where the second to third inequality uses x
j

� 0 and the last integral follows from Lemma 6.2.

Along the same lines,

P(k✓ � ✓
0
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n
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✓
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⌧
n
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Z

P
xj1

nY

j=1

1

p
x
j

exp

⇢
� 2

s
v
n

x
j

+ ✓2
0j

2⌧
n

�
dx

�
✓
D2⇡v

n

⌧
n

◆
n/2

e�
p
2k✓0k1+

p
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where v
n

= r2
n

/4. From the second to third equation in the above display, we used
p
a+ b 

p
a +

p
b and

P
n

j=1

p
x
j


p
n by Cauchy-Schwartz inequality if x 2 �

n�1. Thus, from (47) &

(48), the ratio in (11) can be bounded above as:

P(k✓ � ✓
0
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n

)

P(k✓ � ✓
0
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n
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
✓
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v
n

◆
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e
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Choose t
n

= s
n

, r
n

= 2

p
2s

n

so that v
n

= 2w
n

= 2q
n

log(n/q
n

) and (w
n

/v
n

)

n/2

= e�Cn. Clearly

v
n

n/⌧
n

 Cnq
n

(log n)2 and hence, e
p

2vnn/⌧n
= o(eCn

) by assumption. Thus, the right hand side

of the above display ! 0, proving the assertion of the Theorem.

Proof of Theorem 4.1

First, we will state a more general result on the concentration of DL
1/n

(⌧) when ⌧ ⇠ Exp(�). The

result follows from a straightforward modification of Lemma 4.1 in [22] and the detailed proof is

omitted here. Assume � = t
n

/(2n). For fixed numbers 0 < a < b < 1, let

⌘
n

= 1� (n� q
n

)�

2q
n

log(n/q
n

)

� (q
n

� 1)b

2q
n

, ⇠
n

= 1� (q
n

� 1)a

4q
n

.

Also, without loss of generality assume that {1} ⇢ S
0

= supp(✓
0

), i.e., ✓
01

6= 0. Let S
1

= S
0

\{1}.

If ✓
0

2 l
0

(q
n

;n), it follows that

P (k✓ � ✓
0
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n

) � C P(⌧ 2 [2q
n

, 4q
n

])A
n

B
n

,

where C is an absolute constant, and

A
n

= exp

⇢
� q

n

log 2�
X

j2S1

|✓
0j

|
a

� ✓
01

/(1� b)⌘
n

�

B
n

=


1� exp

⇢
� t

np
2q

n

b

��
qn�1


1� exp

⇢
� t

np
2q

n

(1� a/8)⇠
n

��
.

In our case, |S
0

| = 1, ✓
01

=

p
log n, and t

n

= n�/2. Hence A
n

is a constant, B
n

= exp{�K
1

p
log n}

for some constant K
1

and P (⌧ 2 [2q
n

, 4q
n

]) is also a constant. Hence, under the assumptions of

Theorem 4.1, P (k✓ � ✓
0

k < t
n

) � exp{�C
p
log n}.
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APPENDIX

Proof of Proposition 4.2

When a = 1/n, �
j

⇠ Beta(1/n, 1� 1/n) marginally. Hence, the marginal distribution of ✓
j

given

⌧ is proportional to

Z
1

�j=0

e�|✓j |/(�j⌧)
✓

�
j

1� �
j

◆
1/n

��2

j

d�
j

.

Substituting z = �
j

/(1� �
j

) so that �
j

= z/(1 + z), the above integral reduces to

e�|✓j |/⌧
Z 1

z=0

e�|✓j |/(⌧z)z�(2�1/n)dz / e�|✓j |/⌧ |✓
j

|1/n�1 .

In the general case, �
j

⇠ Beta(a, (n � 1)a) marginally. Substituting z = �
j

/(1 � �
j

) as before,

the marginal density of ✓
j

is proportional to

e�|✓j |/⌧
Z 1

z=0

e�|✓j |/(⌧z)z�(2�a)

✓
1

1 + z

◆
na�1

dz.

The above integral can clearly be bounded below by a constant multiple of

e�|✓j |/⌧
Z

1

z=0

e�|✓j |/(⌧z)z�(2�a)dz.

Resort to Lemma 6.3 to finish the proof.

Proof of Lemma 6.3

Using a simple change of variable,

Z
1

⌧=0

⌧�n/2e�an/(2⌧)d⌧ =
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zn/2�2e�anz/2dz

✓
2

a
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✓
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a
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Z
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�

35



Noting that
R

an/2

t=0

tn/2�2e�tdt  an/2�1

n

/(n/2� 1) and a
n

 n/(2e) by assumption, the last entry

in the above display can be bounded below by

✓
2

a
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◆
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a
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◆
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
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�
.

Let ⇠
n

= 1 � {n/(2e)}n/2�1/�(n/2). Using the fact that �(m) �
p
2⇡mm�1/2e�m for any

m > 0, one has �(n/2) � C{n/(2e)}n/2�1

p
n with C = e

p
⇡. Hence, (1 � ⇠

n

)  C/
p
n for

some absolute constant C > 0.

Proof of Lemma 6.5

Let s = n/2, T =

P
n

j=1

q
j

x
j

+ q
0

and q0
j

= (q
j

+ q
0

). Then, the multiple integral in Lemma 6.5

equals
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Now, we make a change of variable from x to z, with z
j

= q0
j

x
j

/T for j = 1 . . . , n. Clearly, z also

belongs to the simplex �

(n�1). Moreover, letting z
n+1

= 1�
P

n

j=1

z
j

, one has z
n+1

= q
0

x
n+1

/T ,

where x
n+1

= 1�
P

n

j=1

x
j

. Thus, by composition rule,

T =

x
1

z1
q

0
1

= · · · = x
n

z
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x
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z
n
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(A.2)

Let J =

�
@xj

@zl

�
jl

be the Jacobian of the transformation and H =

�
@xj

@zl

�
jl

= J�1. Then,

H
jl

=

8
>><

>>:

q

0
j

T

2 (T � q
j

X
j

) if l = j

�q

0
jXj

T

2 q
l

if l 6= j
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Clearly, |H| = |H
1

|
Q

n
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q

0
j

T

2 with H
1

= T I
n

� xqT, where q = (q
1

, . . . , q
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)

T and |A| de-

notes the determinant of a square matrix A. Using a standard result for determinants of rank
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��
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. Hence the Jacobian of the transformation is
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,

so that the change of variable in (A.1) results in
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where v
j

=

q0

qj+q0
=

q0

q

0
j
. Now, the expression in (A.3) clearly equals
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where (Z
1

, . . . , Z
n

) ⇠ Dir(↵
1

, . . . ,↵
n

, 1). A profound result in [7] shows that expectations of

functions of Dirichlet random vectors as above can be reduced to the expectation of a functional of

univariate Beta random variable:

Dickey’s formula [7]: Let (Z
1

, · · · , Z
n

) ⇠ Dir(�
1

, · · · , �
n

, �
n+1

) and Z
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Z
i

.
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⌫
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,

where X ⇠ Beta(b, a) with b =
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�
j

� a.
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Applying Dickey’s formula with �
j

= ↵
j

= 1/2 for j = 1, . . . , n, �
n+1

= 1 and a = 2 (so that

b = n

2

+ 1� 2 =

n

2

� 1), (A.4) reduces to
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(A.5)

where X ⇠ Beta(b, a) with density f(x) = (n/2)(n/2 � 1)xn/2�2

(1 � x) for x 2 (0, 1). Hence,

(A.5) finally reduces to

q
0

✓
n

2

� 1

◆
�(1/2)n

�(n/2)

Z
1

0

xn/2�2

(1� x)Q
n

j=1

(q
j

x+ q
0

)

↵j
dx

Error function bounds

Let erfc(x) =

2p
⇡

R1
x

e�t

2
dt denote the complementary error function; clearly erfc(x) = 2[1 �

�(

p
2x)], where � denotes the standard normal c.d.f. A standard inequality (see, for example,

Formula 7.1.13 in [1]) states

2

x+

p
x2

+ 2


p
⇡exerfc(

p
x)  2

x+

p
x+ 4/⇡

(A.6)

Based on (A.6), we show that

p
⇡exerfc(

p
x)  1p

x+ 1/⇡
(A.7)

p
⇡exerfc(

p
x) �

⇢
1p
x

�
1+�

(A.8)

where (A.8) holds for any � > 0 provided x � 2.

In view of (A.6), to prove (A.7) it is enough to show that 2
p
x+ 1/⇡ 

p
x +

p
x+ 4/⇡,

which follows since:

(

p
x+

p
x+ 4/⇡)2 � 4(x+ 1/⇡) = 2x+ 2

p
x
p

x+ 4/⇡ � 4x � 0.
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To show (A.8), we use the lower bound for the complementary error function in (A.6). First, we

will show that for any � > 0, x+

p
x2

+ 2  2x1+� if x � 2. Noting that if x � 2

x2+2� � x2

= x2

(x2� � 1) = x2

(x� 1)(1 + x+ · · ·+ x2�

) � 2.

Hence
p
x2

+ 2  x1+� if x � 2, showing that x+

p
x2

+ 2  2x1+� if x � 2. Thus, we have, for

x � 2 and any � > 0,

p
⇡exerfc(

p
x) �

✓
1p
x

◆
1+�

.
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