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Abstract

The paper addresses the problem of formally defining the ‘effective number of param-
eters’ in a Bayesian model which is assumed to be given by a sampling distribution and a
prior distribution for the parameters. The problem occurs in the derivation of information
criteria for model comparison which often trade off ‘goodness of fit’ and ‘model complex-
ity’. It also arises in (frequentist) attempts to estimate the error variance in regression models
with informative priors on the regression coefficients, for example in smoothing. It is argued
that model complexity can be conceptualized as a feature of the joint distribution of the ob-
served variables and the random parameters and might be formally described by a measure
of dependence. The universal and accurate estimation of terms of model complexity is a
challenging problem in practice. Several well-known criteria for model comparison are in-
terpreted and discussed along these lines.
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1 Introduction

“Unfortunately model order estimation remains a subject of tremendous controversy; there is
little agreement on what the ‘best’ approach is, and indeed little agreement on if there is, in
fact, such a thing as a ‘best’ approach.” (LANTERMAN, 2001, p. 186). Indeed, many ideas of
model complexity have been around, from the ‘number of unknown parameters’ (AKAIKE, H.
(1973)), ‘equivalent degrees of freedom’ (YE (1998), a measure of dependence between param-
eter estimates (BOZDOGAN (2010) and earlier papers cited therein), the posterior variance of
the log-likelihood (WATANABE (2010) and earlier papers cited therein) to ‘description length’
or ‘coding length’ referring to coding theory (LANTERMAN (2001) and references therein).
Formal definitions of model complexity are correspondingly dispersed.
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Starting from the apparently dual nature in notions of model complexity which try to catch
‘how much parameters and observations know about each other’ and assuming a Bayesian ap-
proach where the parameter is random (initially endowed with a prior distribution), in this paper
model complexity is conceptualized as a measure of stochastic dependence between observa-
tions and parameters. Without claiming that such a definition exactly comprises as special cases
what has been discussed in the literature before, it is used as a benchmark. Typical situations
that give rise to a measure of model complexity like smoothing in regression or the trade-off be-
tween ‘model fit’ and ‘model complexity’ in predictive model comparison are reviewed. In this
way some major commonly used terms of model complexity can be identified as variants of the
measure of dependence and explained by (i) different distributional assumptions for sampling
(Gaussian, exponential families, general), (ii) the type of model comparison as prior or posterior
predictive, (iii) the type of target in model comparison as expected utility with unknown true
distribution or model specific with known model dependent distribution, (iv) the type of target
in model comparison as representative or average. Thus not a single new definition but a way to
think about it in information-theoretic terms is suggested.

The paper is organized as follows: In section 2 intuitions and heuristics about model complex-
ity and resulting definitions are reviewed. In section 3 measures of dependence are introduced
and elaborated for important special cases. In section 4 the occurrence of terms of model com-
plexity in predictive model comparison is analyzed, and the effect of different set-ups on formal
definitions is illustrated mainly for posterior predictive model comparison. In section 5 estimates
of model comparison are summarized and related to different distributional assumptions. Section
6 concludes with a brief discussion of current developments.

2 Intuitions

2.1 What is a statistical model ?

Nearly everyone will agree that a statistical model describes the generating process of datay =
(y1, ..., yn) in terms of probability distributions or - for convenience - probability densitiesp0(y).
The observations are certainly not independent, because in that case we couldn’t learn from
gathering more data. Hence it is assumed that their dependence is incorporated in a common
parameterθ0 of their probability distribution. In the simplest casep(y|θ0) =

∏n
i=1 p(yi|θ0),

that is, the random variablesYi are independent givenθ0. p(y|θ0) is sometimes called a ‘fully
specified model’, but I prefer to call it a ‘fully specified conditional sampling distribution’. Even
if we dare to specify it, it is not necessarily true, it is just a proposal hopefully compatible with
the data. Usually we do not dare to specifyθ0 apriori, but propose a whole family of probability
densitiesP = {p(y|θ)|θ ∈ Θ} and then try to extract information from the data aboutθ. From a
frequentist point of view and in earlier days of statisticsP was often referred to as ‘the model’.
For example, a standard ‘linear regression model’ with covariablesXi and known regression
functionsa(xi) is specified byYi = a(xi)

T β + εi, εi ∼ N(0, σ2) independent and identically
distributed (iid). The maximum-likelihood estimator of(β, σ2) can then be obtained without
further assumptions. If however additional restrictions onβ are imposed as for example||β||2 ≤
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τ 2 in ridge regression, in estimation such restrictions have to be taken into account, and the ‘linear
regression model’ looks somewhat incomplete. In this spirit YE (1998) calls an estimator, a
mappingy 7→ θ̂(y) ∈ Θ, a ‘modelling procedure’. Hence, in general, a conditional distributional
assumption about the observations is to be completed by assumptions about the parameters.
One principled way to do that is again in terms of probability distributions or prior densities.
This is the set-up of Bayesian statistics which will be adopted here. In particular, a modelM
will be given by a familyP of conditional sampling densities and a prior densityp(θ) on the
parameter spaceΘ. Inference and especially estimation will be based on the posterior density
p(θ|y) = p(y|θ)p(θ)/p(y) according to Bayes’ theorem. AlthoughM = (P , p(θ)) is clearly an
extension of justP , a formal embedding ofP into a model spaceM = {(P , p(θ))} requires the
crucial definition of a ‘non-informative’ prior. Candidates are uniform priors, maximum entropy
priors or reference priors. Inference at this borderline is often referred to as ‘objective Bayesian’
and is an active field of current research (see in particular the work of Berger and Bernardo, e.g.
BERNARDO and SMITH (1994); BERNARDO (1997); BERNARDO, J. M. (2003); BERGER
(2006)); BERGER et al. (2009)). Introducing a prior distribution, the parameter is conceptualized
as a random variableϑ with realizationsθ, and a modelM becomes equivalent to a joint density
p(y, θ). It thus corresponds to a (tentative) representation of the densityp0(y) byEϑp(y|ϑ), which
is motivated and vindicated by de Finetti’s representation theorem. The theorem, however, refers
to the asymptotic empirical distribution function ofY to identify the generating process, whereas
the proposed models(P , p(θ)) most often are approximate or simplified representations. In the
process of learning the representations develop. In particular, having obtained datay, (P , p(θ|y))
is an adapted (‘posterior’) model. Although its dependence on data may look strange, an actual
posterior is not qualitatively different from an informative prior. For example, conjugate priors
are often interpreted as representing prior knowledge based on previous experiments or data.
Hence from a Bayesian point of view to a familyP sequences of models can be related as more
and more data from replicated experiments become available.

2.2 What is model complexity ?

Here are some typical answers.
(i) ‘Model complexity quantifies the explanatory power ofθ for y, the potential of fittingy

with θ.’
In a corresponding first attempt model complexity is linked to the number of parameters, for
examplep, the dimension ofβ in the linear regression. However, by restrictions on the pa-
rameters, in general an informative prior, model complexity as explanatory power is reduced,
and the ‘effective number of parameters’ is expected to be smaller thanp. Closely related is
the notion of degrees of freedom (df) (of initially aχ2−distribution), where in classical linear
regression (Y ∼ N(µ, σ2In), µ = Aβ, β ∈ Rp without prior) df = n − p. With E(Y ) = µ
an unbiased estimate ofσ2 is σ̂2(y) = ||y − µ̂(y)||2/(n − p). To obtain an analogous esti-
mate in smoothing, ‘equivalent degrees of freedom’ (edf) are required. WAHBA, 1990, ch. 5
suggested to define them by the trace of the ‘hat matrix’S yielding the linear fitµ̂(y) = Sy
of the data:edf = n − tr(S). In classical linear regression the least squares estimate ofβ is
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β̂(y) = (AT A)−1AT y with A = ((aj(xi)))j=1...p,i=1...n anda(xi)
T = (a1(xi)...ap(xi)). Hence

E(Y ) = µ = Aβ is estimated byS = A(AT A)−1AT andtr(S) = p. tr(S) was widely accepted
as measure of model complexity in regression (e.g. HASTIE and TIBSHIRANI, 1990, ch. 3.5;
GREEN and SILVERMAN, 1994, ch. 3.3.4). Interestinglytr(S) also illustrates a second idea
about model complexity.

(ii) ‘Model complexity quantifies the discriminatory power ofy for θ’, how hard it is to learn
θ from datay, or how sensitive parameters are to perturbations of observations, or how large the
estimation variance is. Again in classical linear regression (withθ = β, σ2 known) the estimation
variance is measured by

tr(covY |θ(SY )) = σ2tr(S2) =
S orth. projection

σ2tr(S), (1)

and the diagonal entriessii of S describe how sensitivêµi(y) is to yi. The resulting measure
of sensitivity tr(S) =

∑
i sii was generalized by YE (1998) and YE and WONG (1998) to a

measure of model complexity called “general degrees of freedom of a modelling procedure”. It
is defined as

gdf(θ) =
∑

i
covY |θ(µ̂i(Y ), Yi) = tr(covY |θ(µ̂(Y ), Y ). (2)

Without a priorθ is fixed asθ0, marking the true but unknown distribution ofY assumed to belong
to an exponential family, orθ is replaced by an estimate. In a similar spirit BOZDOGAN (2010)
defines a measure of complexity on the covariance matrix of the parameter estimates. From a
Bayesian point of view the notion of ‘estimation variance’ can be given two interpretations: one
may refer to the reduction of uncertainty aboutθ by y (DEGROOT (1962)) or to the variability of
the posterior distribution and related estimates ofθ like the posterior meanE(ϑ|y). If uncertainty
aboutθ is measured bycov(ϑ), the equationcov(ϑ) − EY (cov(ϑ|Y )) = covY (E(ϑ|Y )) shows
that and how these two views are related.

(iii) Another, often rather implicit approach to model complexity is given by procedures of
model comparison in terms of their predictive performance for future observationsỹ generated in
the same way as the datay. Although usually a good fit of the data by an estimateθ̂ is required,
too good a fit might result in a poor fit (prediction) ofỹ. Therefore, typically in predictive model
comparison a trade-off between data fit and the sensitivity ofθ̂(y) to y (‘model complexity’)
is sought. The resulting information criteria (IC) all suggest some formal description of model
complexity, as for example in

BIC = −2 log p(y|θ̂ML(y)) + 2p log n (3)

(SCHWARZ (1978)), in
AIC = −2 log p(y|θ̂ML(y)) + 2p (4)

(AKAIKE, H. (1973)), or in

DIC = −2 log p(y|E(ϑ|y)) + 2pD (5)

(SPIEGELHALTER et al. (2002)), where the measure of model complexity is
pD = −2Eϑ|y(log p(y|ϑ)) − 2 log p(y|E(ϑ|y)) (in short: pD = D − D(θ) with D denoting de-
viance andθ the posterior mean).pD reduces totr(S) in linear regression. DIC might be seen as
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generalization of AIC in the sense that DIC reduces to AIC if the prior is non-informative. There
are many more such criteria (e.g. GIC, KONISHI and KITAGAWA (1996); WAIC, WATANABE
(2010) and hence unfortunately many formally different and often seemingly unrelated terms are
claimed to be terms of model complexity. Technically they are derived setting up a measure of
predictive success as a target (e.g. an average value oflog p(ỹ|θ̂(y))), and estimating that target
by an empirical version (e.g.log p(y|θ̂(y))). The average difference between the target and its
estimate is thought to represent model complexity and is again estimated. This estimation can
be involved, and often comprises simplifying approximations. The resulting terms are hardly
comparable incorporating different targets and different approximation and estimation methods.

2.3 What is to be learnt ?

The brief review of ideas about model complexity points to several issues:
(i) Model complexity should be a dual concept, catching both directions of how much the

parameter explains the observations and of how much the observations determine the parameter.
(ii) There is an ambiguity whether the second direction actually is fromy to θ or rather from

y to an estimatêθ. From a frequentist point of view the stochastic dependence betweenY and
θ̂(Y ) is a natural measure to look at (as in (2)). From a Bayesian point of viewϑ is a random
variable and the stochastic dependence betweenY andϑ is directly defined.

(iii) It is rather hopeless to derive a formal definition of model complexity from mathematical
comparisons of the many versions representing it in the statistical literature on predictive model
choice. Instead, we need to have an abstract notion explaining the many versions.

3 Measures of dependence between observables and parame-
ters

The heuristics outlined in the previous section point to the idea of quantifying model complex-
ity by a measure of dependence between observed random variables and parameters. Taking
a Bayesian point of view (and thus interpreting frequentist inference as a special case with an
‘objective’ prior) measures of stochastic dependence betweenY andϑ are of interest, where as
before their joint density isp(y, θ) = p(y|θ)p(θ) = p(θ|y)p(y). A very general and often used
measure is the mutual information defined by

I(Y, ϑ) = EY,ϑ[log
p(Y, ϑ)

p(Y )p(ϑ)
]. (6)

Recalling that the directed Kullback-Leibler divergence (KL-divergence) between two possible
densitiesp(z), q(z) of a random variableZ is given byKL(p, q) = EZ|p[log(p(Z)/q(Z))], the
mutual information is seen to be the directed KL-divergence between the joint densityp(y, θ)
representing dependence and the product of marginal densities representing independence of
Y andϑ. A directed KL-divergence is not symmetric in the densities,KL(p, q) 6= KL(q, p),
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but can be symmetrized adding the two directed divergences. Hence the symmetrized mutual
information is given by

J(Y, ϑ) = I(Y, ϑ) + Ĩ(Y, ϑ), (7)

whereĨ(Y, ϑ) = EY Eϑ(log p(Y )p(ϑ)
p(Y,ϑ)

). These measures are invariant to re-parameterizations as is
to be required for a measure of model complexity.

3.1 Properties and interpretations of (symmetrized)
mutual information

3.1.1 Prior version

I(Y, ϑ) is symmetric in the variablesY andϑ and thus has dual features. The decompositions
p(y, θ) = p(y|θ)p(θ) = p(θ|y)p(y) yield

I(Y, ϑ) = Eϑ[KL(p(y|ϑ), p(y))] = EY [KL(p(θ|Y ), p(θ))]. (8)

The middle term can be interpreted as a measure of variability of the (conditional) sampling
densityp(y|θ) relative top(y), catching the intuition of the ‘modelling potential’ ofp(y|θ). The
term on the right hand side measures the difference between prior and posterior distribution thus
catching the intuition of ‘difficulty of estimation’ and ‘sensitivity of an estimate’ (the poste-
rior density) toy. I(Y, ϑ) is a well studied quantity in Bayesian statistics, called “the expected
amount of information aboutϑ provided by an experiment yieldingy” (e.g. GOEL (1983);
BERNARDO and SMITH, 1994, p. 158 ). It is used as a starting point to derive ‘objective’
reference priors (BERGER et al. (2009)) or Bayesian experimental designs (e.g. CHALONER
and VERDINELLI (1995)). Equation (8) carries over toJ(Y, ϑ). By duality the mutual infor-
mation also reflects restrictions of the (conditional) sampling distribution as related to a lack of
identifiability or over-parametrization.

If p(y|θ) belongs to an exponential family, that isp(y|θ) = a(y) exp(θT t(y)−M(θ)), J(Y, ϑ)
can be represented by the trace of a covariance matrix,

J(Y, ϑ) = tr(covY (E(ϑ|Y ), t(Y ))) = tr(covϑ(ϑ, E(t(Y )|ϑ))), (9)

and thus is similar to the generalized degrees of freedom in equation (2). But (2) and (9) are not
equivalent, because gdf (as a frequentist concept) depends onθ, whereasJ(Y, ϑ) is an integral
overϑ.

For example, in the special Gaussian caseY |θ ∼ N(θ, Σ) with knownΣ, t(y) = Σ−1y, and
with the priorϑ ∼ N(0, K) one obtains fory, θ ∈ Rp

I(Y, ϑ) =
1

2
log(det(Ip + KΣ−1)), (10)

J(Y, ϑ) = tr(KΣ−1) = tr((Ip + KΣ−1))− p. (11)

If the prior becomes flat and hence intuitively the model becomes more complex,I(Y, ϑ) and
J(Y, ϑ) increase. For example, ifΣ = σ2

n
Ip andK = τ 2Ip, J(Y, ϑ) = p(nτ 2/σ2). The posterior
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distribution is again Gaussian,ϑ|y ∼ N(K(Σ + K)−1y,
(Σ−1+K−1)−1), and asIp+KΣ−1 = cov(ϑ)cov(ϑ|y)−1, mutual information compares the prior
and posterior distribution in terms of the corresponding covariance matrices.J(Y, ϑ) is not equal
to the trace of the ‘hat matrix’, though: for the ‘hat matrix’ inE(ϑ|y) = Sy, S = K(Σ+K)−1 =
(ΣK−1 + Ip)

−1 one hastr(S) = tr(covY |θ(SY, Σ−1Y ) 6= tr(covY (SY, Σ−1Y ) = J(Y, ϑ).

3.1.2 Posterior version

The reasoning so far qualitatively corroborates the idea of formalizing model complexity by a
measure of dependence betweenY andϑ, but I(Y, ϑ) andJ(Y, ϑ) do not scale correctly if the
number of parameters or the trace of the ‘hat matrix’ is taken as a benchmark. Looking at the
problems yielding this benchmark, particularly AIC, reveals that in these set-ups it is not of inter-
est how well the parameterθ fits the data, but how well an estimate ofθ fits future observations̃y.
Hence the (symmetrized) mutual information between a random vectorỸ corresponding to future
replications of the same experiment and the random variableϑpost corresponding to the posterior
distribution may be more appropriate. The resulting joint densityp̃(ỹ, θ) = p(y|θ)p(θ|y) with
marginal densitiesp(ỹ|y) andp(θ|y) yields I(Ỹ , ϑpost) andJ(Ỹ , ϑpost) analogously to (6) and
(7), which depend on the datay. This is coherent with the definition of a model by not only the
family P ={p(y|θ)|θ ∈ Θ}, but also a distribution onΘ, which evolves with replications of the
experiment.

In the special Gaussian example

J(Ỹ , ϑpost) = tr(covϑpost(ϑ, E(Σ−1Ỹ )|ϑ)))

= tr(Σ−1 + K−1)−1Σ−1 = tr((Ip + ΣK−1)−1)

= tr(S). (12)

If the prior becomes flat,J(Ỹ , ϑpost) tends totr(Ip) = p. For illustration, if againΣ = σ2

n
Ip and

K = τ 2Ip, tr(S) → p for τ 2 → ∞ or n → ∞. The Gaussian example is not only interesting
in itself, its structure also lurks behind terms that occur if second order Taylor expansions are
applied to approximate the sampling density, or if reference to asymptotic normality is made.

To conclude, some formulae to representJ(Ỹ , ϑpost) in the non-Gaussian case are summa-
rized and estimates are briefly discussed.

If Y, Ỹ belong to an exponential family withp(y|θ) = a(y) exp(θT t(y) −M(θ)), the repre-
sentation as in (9) holds,

J(Ỹ , ϑpost) = tr(covϑpost(ϑ, E(t(Ỹ )|ϑ))). (13)

Equation (13) is derived from

J(Ỹ , ϑpost) = EϑpostEỸ |ϑ[(ϑ− θ)T (t(Ỹ )− t(y))], (14)

whereθ = E(ϑ|y). (14) also yields

J(Ỹ , ϑpost) = Eϑpost [KL(p(ỹ|ϑ), p(ỹ|θ)) + KL(p(ỹ|θ), p(ỹ|ϑ))] (15)
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as demonstrated in (VAN DER LINDE (2004)).
The complexity termpD = D −D(θ) of DIC may be interpreted as estimate ofJ(Ỹ , ϑpost),

if (15) holds and ifKL(p(ỹ|θ), p(ỹ|θ)) ≈ KL(p(ỹ|θ), p(ỹ|θ)) :

J(Ỹ , ϑpost)

= Eϑpost [KL(p(ỹ|ϑ), p(ỹ|θ)) + KL(p(ỹ|θ), p(ỹ|ϑ))]

≈ 2Eϑpost [KL(p(ỹ|ϑ), p(ỹ|θ))]
= 2Eϑpost [EỸ |ϑ(log p(Ỹ |ϑ)− log p(Ỹ |θ)]
≈ 2Eϑpost [log p(y|ϑ)− log p(y|θ)]
= pD

(cp. SPIEGELHALTER et al., 2002, p. 604). HencepD can be expected to work as an estimate
of J(Ỹ , ϑ) in exponential families. but not necessarily under general distributional assumptions.

By definition

J(Ỹ , ϑpost) = EϑpostEỸ |ϑ[log p(Ỹ |ϑ)]− EϑpostEỸ |y[log p(ỹ|ϑ)].

Without reference to distributional assumptions PLUMMER (2002) suggested the representation

J(Ỹ , ϑpost) = E
ϑ

(1)
post

E
ϑ

(2)
post

[KL(p(ỹ|ϑ(1)), p(ỹ|ϑ(2)))] (16)

on which Monte Carlo estimates can be based. For cross-validatory variants of this representation
see PLUMMER (2008).

In general, estimation of (symmetrized) mutual information based on samples only, is a noto-
riously difficult problem because inherently unknown densities have to be estimated. In contrast,
in model comparison the densities are specified, and this information considerably alleviates the
estimation of model complexity.

3.2 Related ideas

Clearly other divergences between the joint density and the product of marginal densities could
be used to define a measure of dependence. For example, the family ofϕ− divergences between
densitiesp andq of a random variableZ introduced by CSISZAR (1967),

Dϕ(p, q) = Eq[ϕ(
p(Z)

q(Z)
)]

whereϕ is continuous convex (and additionally satisfies non-restrictive regularity conditions)
has been well studied (e.g. MICHEAS and ZOGRAFOS (2006) and references therein). The
KL-divergence is obtained as a special case forϕ(u) = u log(u). Features and comparisons of
various measures of distance between probability distributions are currently discussed in the field
of information geometry The (symmetrized) KL-divergence is closely related to fundamental
statistical concepts like the principle of maximum likelihood and the notion of sufficiency, espe-
cially in exponential families (MCCULLOCH (1988)), and hence often represents the geometry
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of decision theory behind conventional statistical procedures. Therefore, although logically it is
only one option, in terms of statistical practice it is an omnipresent and thus dominant option,
often going unnoticed, though.

Similar in spirit to mutual information as measure of variability oflog p(y|θ) relative to
log p(y) = log Eϑp(y|ϑ), but formally different (becauseEϑ and log are interchanged), is the
measure of model complexity introduced by WATANABE (2010). It is given by the sum of pos-
terior variances oflog p(yi|θ) (for conditionally independent observationsyi), which measures
variability of log p(yi|θ) relative toEϑ(log p(yi|ϑ)).

The ‘sensitivity ofp(y|θ) to changes inθ’ or dually the ‘reduction of uncertainty aboutθ due
to y’ is often measured using the (expected) Fisher information matrix,

I(θ) = ((EY |θ[
∂ log p(Y |θ)

∂θi

∂ log p(Y |θ)
∂θj

]))i,j=1...p. (17)

In differential geometry a family of sampling distributions corresponds to a statistical mani-
fold, and the Fisher information characterizes the curvature of the log-likelihood functions. (See
MURRAY and RICE (1993) or AMARI et al. (1987) Thus Fisher information describes the
magnitude of change locally.I(θ) provides an approximation

KL(p(y|θ), p(y|θ′)) ≈ 1

2
(θ − θ′)T I(θ)(θ − θ′), (18)

(BLYTH (1994)). This is different from what is intended to grasp in a description of model com-
plexity by the global range of densities. In general,I(Y, ϑ) or J(Y, ϑ) cannot be expressed as an
expected KL-divergence of two densities in the same familyP because in mutual information the
reference density is the marginal density which need not belong toP. p(y) can only replaced by
p(y|θ′) for someθ′ in special cases, for example byp(y|E(ϑ)) in J(Y, ϑ), if P is an exponential
family. (BOZDOGAN (2010) and earlier papers cited therein) introduces a measure of model
complexity based on the covariance matrix of parameter estimates, especially based on the in-
verse Fisher information matrix referring to the asymptotic distribution of maximum likelihood
estimates.

4 Model complexity in predictive model comparison

Information criteria for predictive model comparison very often trade off ‘model fit’ and ‘model
complexity’. It is useful to distinguish between criteria assessing ‘prior prediction’, that is, ac-
commodating observationsy using the priorp(θ), or ‘posterior prediction’, that is, predicting
future observations̃y (of the same type asy) using the posteriorp(θ|y). In the former case, for
example the marginal likelihoodlog p(y) = log(Eϑ[p(y|ϑ)]) is of interest, in the latter case for
exampleEỸ |y[log p(Ỹ |y)] = EỸ |y log(Eϑpost [p(Ỹ |ϑ)]) or EỸ Eϑpost [log p(Ỹ |ϑ)] is to be consid-
ered.ỹ is a replicate vector, the result of running again the experiment yieldingy. No assumption
of independence (conditionally onθ) of the components inY, Ỹ is made at this stage.

The key idea to be discussed in this section is that the decomposition of such criteria into
terms of ‘model fit’ and ‘model complexity’ is due to a fundamental representation of marginal
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entropy. For two random variablesU and V with joint probability densityp(u, v) one has:
“Marginal entropy equals conditional entropy plus mutual information”. Formally, based on

− log p(u) = − log p(u|v) + log(
p(u, v)

p(u)p(v)
),

one obtains, taking expectations with respect to(U, V ),

EU [− log p(U)] = EV EU |V [− log p(U |V )] + EU,V [log(
p(U, V )

p(U)p(V )
)], (19)

or in short,
H(U) = H(U |V ) + I(U, V ). (20)

Similarly,
EUEV [− log p(U |V )] = H(U |V ) + J(U, V ). (21)

There are prior versions of (20), (21) corresponding toU = Y, V = ϑ and posterior versions cor-
responding toU = Ỹ , V = ϑpost. It is proposed that many information criteria occur as variants
of these core equations without claiming that they are all just special cases. The ‘fluctuations’
of popular information criteria around (20) and (21) reflect options and choices that are made
with respect to the target (on the left hand side) and the estimation of approximate targets (on
the right hand side). Some of these choices, especially for posterior predictive model compar-
ison, are briefly discussed. Typically, referring to an information criterion only the (estimated,
approximate) right hand side is quoted. In order to gain insight, however, the derivation from the
target has to be tracked.

4.1 Targets

4.1.1 Expected utilities versus model specific targets

Often in predictive model comparison the utilityu(M, z) of a modelM is described by a pre-
dicting densitỹpM evaluated at an observationz.

In ‘prior prediction’ typically the marginal density evaluated at the data is used,u(M, y) =
log pM(y), and the model maximizing this term is chosen. If there are only finitely many models
under consideration, and a uniform prior is specified overM, pM(y) is proportional to the pos-
terior probability of that model. On average over possible data sets generated according toM
the approach corresponds to minimizing the entropy of the model specific marginal density, and
(20) indicates thatI(Y, ϑ) is the corresponding term of model complexity.
There are other ideas about model complexity in prior prediction derived from coding theory as
the criteria of minimum description length (MDL) or minimum message length (MML). These
ideas and those arising from statistics like the ‘Bayesian information criterion’ (BIC) can - at
least in parts - be formally related within the field of information theory (LANTERMAN (2001)).
These links are not explored in this paper and require further investigation.

In ‘posterior prediction’ the approach is involved. The utility of a model is now described
by a predicting density evaluated in future observationsỹ, for example,u(M, ỹ) = log pM(ỹ|y)]
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or u(M, ỹ) = Eϑpost [log pM(ỹ|ϑ)], or particularly from a frequentist point of viewu(M, ỹ) =

log pM(ỹ|θ̂(y)). As the true (marginal) densityp0 of Y and hence of̃Y as observation of the
same type is unknown, the crucial point then is to evaluate an average over future observations,
an expected utilityEỸ [u(M, Ỹ )]. Frequentists and Bayesians might agree on the existence of
a true densityp0 as being asymptotically determined (for Bayesians giving rise to de Finetti’s
theorem), but it is not available and all competing models only suggest possible approximations.
The evaluation of a target specified as expected utility therefore requires choosing a common
density p̂0 for Ỹ . Major choices are: a density corresponding to a more complex model than
those under competition like a model average (e.g. SAN MARTINI and SPEZZAFERI (1984)),
an encompassing model (e.g. GUTIERREZ-PENA, E. (1987)), a nonparametric model (e.g.
GUTIERREZ-PENA and WALKER (2001)), or - if the components ofY, Ỹ are independent and
identically distributed (iid) - the empirical distribution function given the data (e.g. KONISHI
and KITAGAWA (1996), GIC; ANDO (2007), BPIC). The independence assumption also leads
to cross-validatory targets (e.g. PLUMMER (2008). The key question here is: how can an
expected utility with respect to a common density ofỸ result in a decomposition into model
specific terms of complexity ?
For illustration, remember that the expected utility yielding AIC,
−2EỸ |θ0

EY |θ0 [log pM(Ỹ |θ̂ML(Y ))], and the model specific target of DIC,

−2EỸ |y[log pM(Ỹ |E(ϑ|y))], for a non-informative prior both result in the criterion

−2 log pM(y|θ̂ML(y)) + 2p. Similarly EFRON (1986) starts with a model specific target
−2EỸ |θ[log pM(Ỹ |θ̂ML(y))] with pM(y|θ) in an exponential family, and derives

CM(θ) = tr(covỸ |θ(θ̂ML(Ỹ ), Ỹ )) as a complexity term (cp. equations (2) and (9)) and ends up
again with2p as approximation ofCM(θ) for all θ as in AIC.

The key question is answered in three parts. (In the sequel the subscript for the model will
be dropped again.)

• In general, under an expected utility the complexity term is not equal toI(Ỹ , ϑpost) or
J(Ỹ , ϑpost). For example, analogously to (21), withU = Ỹ , V = ϑpost, but expected
utility with respect top0

−EỸ |p0
Eϑpost [log p(Ỹ |ϑ)] = −EỸ |p0

Eϑpost|ỹ[log p(Ỹ |ϑ)] + EỸ |p0
[J(Ỹ )],

andJ(Ỹ , ϑpost) = EỸ |y[J(Ỹ )] 6= EỸ |p0
[J(Ỹ )].

• Under a ‘good model assumption’p(ỹ|y) ≈ p0(ỹ), the complexity termsEỸ |y[J(Ỹ )] and

EỸ |p0
[J(Ỹ )] are close. Under the Bayesian paradigm of sequential learningp(ỹ|y) repre-

sents the current belief, what is known aboutỸ to the best of our present knowledge.

• Second order Taylor expansions oflog p(ỹ|θ) induce Gaussian approximations, for which
under a non - informative priorJ(Ỹ , ϑpost) ≈ p, and hence the complexity terms coincide
for all initially different Ỹ ∼ N(θ, ΣM) with model specific covariance matrixΣM . This
is the special case in recovering AIC in spite of starting with a model specific target (DIC
or EFRON (1986)).
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Of course, there are also model specific targets set-up for posterior predictive model com-
parison. For example, the target of DIC (SPIEGELHALTER et al. (2002)), its cross-validatory
version (PLUMMER (2008)), the criteria by GELFAND and GHOSH (1998). In these cases
J(Ỹ , ϑpost) can be more immediately related to the term of model complexity occurring in the
criteria.

The ICOMP-type criteria by (BOZDOGAN (2010) and earlier references therein) which are
intended to generalize AIC do not fit into this framework being based on utilities different from
those specified in (20) and (21). The same applies to targets that do not take into account the full
sampling distribution, as - for example - averaged squared errorsEY |µ(||µ − µ̂(Y )||2), popular
in smoothing and regression with linear estimatorsµ̂(Y ). These are not discussed here.

4.1.2 Representative versus average targets

A density based target is called representative if an estimate is plugged in as, for example, in
EỸ |y[log p(Ỹ |θ̂(y))]. If, in contrast,θ is integrated out, as, for example, inEỸ Eϑpost [log p(Ỹ |ϑ)],
it is called an average (density based) target. Representative targets are necessary from a tra-
ditional frequentist point of view where no prior is assumed. Representative targets obviously
depend on the estimator̂θ, which should be invariant under re-parameterizations. Average tar-
gets are natural from a Bayesian point of view though representative targets as expected utilities
are not excluded. Strictly speaking (20) and (21) apply only to average targets, but analogous
expressions can be derived for representative targets. For example,

−EỸ |y[log p(Ỹ |θ̂(y))] = H(Ỹ |ϑpost) + Eϑpost [KL(p(ỹ|ϑ), p(ỹ|θ̂(y)))]. (22)

Recalling thatI(Ỹ , ϑpost) = EϑpostKL(p(ỹ|ϑ), p(ỹ|y)) and the interpretation of Kullback-Leibler
divergences as measures of variability ofp(ỹ|θ) with respect top(ỹ|y), it is seen that essentially
for representative targets the densityp(ỹ|θ̂(y)) rather than the marginalp(ỹ|y) is used as a refer-
ence. In order to formally link mutual information and Kullback-Leibler divergences incorporat-
ing estimates a representation

J(Ỹ , ϑpost) = Eϑpost [KL(p(ỹ|ϑ), p(ỹ|θ̂∗(y)))] + Eϑpost [KL(p(ỹ|θ̂∗(y)), p(ỹ|ϑ))] (23)

would be required for some estimatorθ̂∗. Such a representation indeed holds forJ(Ỹ , ϑpost) if
p(y|θ) belongs to an exponential family and̂θ∗(y) = E(ϑ|y) = θ (as outlined in section 3.1.2).
Furthermore under these conditions, within a second order Taylor expansion

1

2
J(Ỹ , ϑpost) ≈ Eϑpost [KL(p(ỹ|ϑ), p(ỹ|θ))] ≈ Eϑpost [KL(p(ỹ|θ), p(ỹ|ϑ))], (24)

(Kullback, 1968, ch. 6.2), such that (22) becomes

−EỸ |y[log p(Ỹ |θ̂(y))] ≈ H(Ỹ |ϑpost) +
1

2
J(Ỹ , ϑpost). (25)

Hence, ifp(y|θ) belongs to an exponential family, the model complexity corresponding to a
representative target can be approximately described again in terms ofJ(Ỹ , ϑpost), however with
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a scaling factor of1/2. This result explains many criteria that have been proposed in the literature.
Without restrictive distributional assumptionsJ(Ỹ , ϑpost) is not the term of model complexity
associated with a representative target. The right hand side of (24) corresponding to a term of
model complexity for a representative target (with representerθ), may well be estimated bypD/2
beyond exponential families under the assumption of symmetry as argued in section 3.1.2.

4.2 Estimation of targets

4.2.1 Model complexity as penalty for using the data twice

In the literature about posterior predictive model comparison it is argued that model complexity
results from the “bias correction for using the data twice”.

Introducing a direct estimatêT (y, θ̂(y)) of a representative targetT (θ̂(y)) is a traditional
main steam of reasoning in posterior predictive model comparison, yielding the famous decom-
position into ‘model fit’(= T̂ (y, θ̂(y))) and ‘model complexity’(

.
= T (θ̂(y)) − T̂ (y, θ̂(y))) in

information criteria.
For example, in the derivation of DIC with the targetT (θ) = −2EỸ |y[log p(Ỹ |θ)], T̂ (y, θ) =

−2 log p(y|θ) = D(θ) one obtainsT (θ) − T̂ (y, θ) ≈ 2pD = 2(D −D(θ)) (SPIEGELHALTER
et al., 2002, p. 604). If (24) holds, in particular forθ̂(y) = θ in DIC,
pD ≈ 2Eϑpost [KL(p(ỹ|ϑ), p(ỹ|θ))] estimatesJ(Ỹ , ϑpost). Note that, in comparison to (21),

T̂ (y, θ̂(y)) does not estimate2H(Ỹ |ϑpost). For example, in DIC,̂T (y, θ̂(y)) = D(θ), whereas
2H(Ỹ |ϑpost) is estimated bŷT (y) = D. Hence the decompositionDIC = D + pD is one into
‘model adequacy plus model complexity’ and corresponds to (21), whereas the decomposition
DIC = D(θ) + 2pD is one into ‘fit’ plus two times ‘model complexity’.

As seen in the previous section (comparing (21) to (22)) the transition from an average target
like T = −2EỸ |yEϑpost [log p(Ỹ |ϑ)] to the representative targetT (θ̂(y)) = −2EỸ |y[log p(Ỹ |θ̂(y))]

‘costs’2J(Ỹ , ϑpost)−
2Eϑpost [KL(p(ỹ|ϑ), p(ỹ|θ̂(y)))], and (under the conditions of exponential families and symme-
try) the last term is close to2Eϑpost [KL(p(ỹ|ϑ), p(ỹ|θ))] = J(Ỹ , ϑpost). Combining the two steps

the overall differenceT − T̂ (y, θ̂(y)) for an average target becomes3J(Ỹ , ϑpost).

A more general argument particularly for an average target without reference to a represen-
tative target, that using the data twice yields model complexity in terms ofJ(Ỹ , ϑpost) has not
yet been presented. The two conditions required in the reasoning above are ubiquitous in the
literature: exponential families are common in regression analyses, a major field where model
comparison is required, and symmetry is achieved by second order Taylor expansions.

A plug-in estimateT̂ of a targetT and an analytical approximation of the difference is not
always necessary, though. Simulation based estimates of the target or the ‘bias’ might do as well.
Furthermore, if model complexity is assessed as ‘bias’ applying analytical expansions, approx-
imations and simplifications toT − T̂ , do these perform uniformly well across the candidate
models ? Or do model specific approximation errors distort the model comparison ? If so, do
sampling based methods provide uniformly better estimates ?
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4.2.2 Simulation based estimates

Simulation based estimates are obtainable if the target is model specific or, for targets that are
expected utilities, if the observations are independent conditionally onθ. Up to now this assump-
tion has not been made. The following remarks do not provide additional insight into model
complexity but are included to complete the review of main ideas in predictive model compari-
son.

Model specific targets In prior predictive model comparison the quantity of interest is the
‘model evidence’Eϑ[p(y|ϑ)]. An influential paper on (Gibbs) sampling of values of a marginal
density was that by CHIB (1995), a more recent paper is (NEAL (2001)). New techniques are
described by DIDELOT et al. (2011), who also give brief reviews and provide many references.

In posterior predictive model comparison the problem of Monte Carlo estimation of model
specific targets like that of (21) or GELFAND and GHOSH (1998) has hardly been tackled. This
maybe due to the fact that model specific targets are not that frequent, the dominating approach
being that of expected utilities. Here is a field of research opportunities.

Estimates of expected utility under independence assumptionsThe assumption that, condi-
tionally onθ, the observations are independent yields

log p(ỹ|θ) =
∑

i
log p(ỹi|θ). (26)

If the random variablesYi are iid, the random variables̃Yi are iid, too. If the random variables
Yi and hencẽYi correspond to covariablesXi as in regression,log p(ỹi|θ) = log p(ỹi|xi, θ), and
(26) can have two meanings: (i) the pairs(Xi, Yi) are independent, or (ii) given thexi the Yi

are independent. In case (i) the replication of the experiment may result in new values of the
covariables, in case (ii) the experimental design is fixed.

Under the independence assumption an empirical distribution function for(X, Y ) or Y can
be obtained. If the target is an expected utility the empirical distribution function can be used
to replace the unknown distribution function in the approximation of the ‘bias’ (e.g. KONISHI
and KITAGAWA (1996); ANDO (2007)). It can also be used to derive bootstrap estimates of the
‘bias’ (e.g. SHIBATA (1997)).
Alternatively a cross-validatory substitute of a target can be obtained based on

T = EỸi
[log p(Ỹi|θ̂(y))] ∼=

1

n

∑
i
log p(yi|θ̂(y−i)) = TCV

for a representative target or on

T = Eϑpost [log p(ỹi|ϑ)] ∼=
1

n

∑
i
Eϑpost−i

[log p(yi|ϑ)] = TCV

for an average target, wherey−i denotes the vector of observations withoutyi andEϑpost−i
the

posterior expectation with respect toy−i. The approximationsTCV can be evaluated directly,
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which might be computationally expensive, or they can again be estimated using the data twice,
which then requires a correction term. For example,

TCV =
1

n

∑
i
Eϑpost−i

[log p(yi|ϑ)] ≈ 1

n

∑
i
Eϑpost [log p(yi|ϑ)] := T̂CV .

(For details and applications see PLUMMER (2008).) The correction termTCV − T̂CV cor-
responds to1

n

∑
i J(Yi, ϑpost−i), but not to 1

n

∑
i J(Ỹi, ϑpost) as would be expected under inde-

pendence with1
n
J(Ỹ , ϑpost) as term of model complexity. The difference is due to the cross-

validatory approximation of the targetT ≈ TCV which ‘reduces the sample size ton − 1’ (cp.
EFRON (1986)). Asymptotically the information criterion and cross-validation are equivalent
(STONE (1977) for AIC; WATANABE (2010) for WAIC). Watanabe’s target, the expected util-
ity T = −EỸ [log p(Ỹ |y)] is replaced byTCV = − 1

n

∑
i log p(yi|y−i), which in turn is estimated

by T̂CV = − 1
n

∑
i log p(yi|y) yielding

WAIC = − 1

n

∑
i
log p(yi|y) +

∑
i
varϑpost [log p(yi|ϑ)]. (27)

5 Discussion

The brief review has revealed a few crucial and perhaps controversial issues in predictive model
comparison that are to be summarized here.

1. Joint features and differences of frequentist and Bayesian predictive model comparison
become aware only gradually. In traditional frequentist statistics the sampling distribution of
parameter estimates and the (inverse) Fisher information matrix characterizing the asymptotic
distribution of maximum likelihood estimates have been prevailing concepts. The Bayesian ap-
proach not only is more comprehensive but also results in emphasis on different tools.

• The focus is shifted from representative to average targets in predictive model compari-
son. Representative targets most often reflect the frequentist tradition in statistics. From a
Bayesian point of view representative targets may be set up, but do not take into account
uncertainty aboutθ, average targets seem more appropriate.

• Ubiquitous second order Taylor expansions are recognized to be related to representative
targets, while average targets more naturally combine with information theoretic decompo-
sitions as in (20) and (21). Average targets correspond to mutual information as measure of
model complexity, representative targets correspond to KL-divergences with a representa-
tive (rather than marginal) density as reference density. These in general different measures
of model complexity coincide in exponential families for the symmetrized KL-divergence
with the mean ofϑ as representer.

• Experience with simulation based methods of estimation of targets is growing. They have
already been applied to prior predictive targets but less so to (model specific) posterior
predictive targets. Under independence, bootstrapping is still an option.
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• Comparisons based on finite sample sizes can and should be made. Asymptotic equiva-
lences between information criteria and cross-validatory procedures demonstrate that even-
tually the same structures of targets are caught. In practice, however, the preference or
disadvantage of a model due to an approximation or finite sample estimation is of interest.

2. A common language for comparing stochastic models is the language of probability the-
ory. Basis concepts of probability theory are entropy and information. “Many problems of
current scientific interest are described, at least colloquially, as being about the flow and con-
trol of information. It has been more than fifty years since Shannon formalized our intuitive
notions of information, yet relatively few fields actually use information theoretic methods for
the analysis of experimental data” (SLONIM et al., 2005, p.1). Information theoretic concepts
have been lurking behind much of decision theory applied in statistics. Notwithstanding context
- or subject-specific aims of some statistical analyses, information theory provides a meta-level
to formalize general interests in data analysis. It often acts as a ‘spirit’ driving the scientists’
intuitions. For instance, SPRENGER (2010) discussing the “weight of simplicity in statistical
model comparison” asks if there is a definite trade-off between simplicity and goodness of fit.
Although no particular criterion provides an answer, a “normative force” can be recognized in
the decompositions (20) and (21).

An information-theoretic interpretation of the notion of model complexity was proposed in
this paper, intended to invite and stimulate further research and discussion.

3. The discussion emphasized that it s useful to study information criteria as estimates of tar-
gets. A crucial step of approximation/estimation in such a derivation is the good model assump-
tion. In particular, if If an independence assumption does not hold and hence a cross-validatory
target cannot be defined, is it acceptable and even more honest to define a model specific target
rather than invoking some ‘good model assumption’ hidden in the evaluation of approximate
terms ? From a Bayesian point of view in prior prediction model specific targets might be jus-
tified as proportional to posterior probabilities of models under a uniform prior (on models), if
finitely many models are to be compared. How are they justified in posterior prediction ?

Another crucial issue is the appropriateness of approximations under general distributional
assumptions. What can be said about the uniformity of performance of an information criterion
as estimator of a target across models under comparison ? Reference to the decompositions (20)
and (21) may provide a benchmark. For example, in information criteria, knowing the quantity
to be estimated reveals limitations of frequently used estimates:p, the number of parameters is
a bad estimator, if Normality does not hold or the prior is informative;pD might become a bad
estimator ofJ(Ỹ , ϑpost) outside exponential families.

4. “Singular models”, where commonly assumed regularity conditions (like positive defi-
niteness of the Fisher information matrix) do not hold, are more frequently used, and the fa-
mous information criteria developed for regular models like AIC or BIC need to be generalized.
WATANABE (2010) throughout his work points especially to neural networks, mixtures, re-
duced rank regression, hidden Markov models etc., which have come into use with the ability to
evaluate posterior distributions by sampling. Along with the availability of powerful computing
resources, statistical methods have been re-thought and advanced also in the machine learning
community, and any attempt to extract principles of scientific reasoning from statistical practice
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has to take that work into account as well.
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