
Stan
Probabilistic Programming Language

Core Development Team (20 people, ∼4 FTE)

Andrew Gelman, Bob Carpenter, Matt Hoffman, Daniel Lee,

Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo,

Peter Li, Allen Riddell, Marco Inacio, Jeffrey Arnold,

Mitzi Morris, Rob Trangucci, Rob Goedman, Brian Lau,

Jonah Sol Gabray, Alp Kucukelbir, Robert L. Grant, Dustin Tran

Stan 2.7.0 (July 2015) http://mc-stan.org

1

http://mc-stan.org

Why Stan?

• Application: Fit rich Bayesian statistical models

• Problem: Gibbs and Metropolis too slow (diffusive)

• Solution: Hamiltonian Monte Carlo (flow)

• Problem: Interpreters slow and unscalable

• Solution: Compiled to C++

• Problem: Need gradients of log posterior for HMC

• Solution: Reverse-mode algorithmic differentation

2

Why? (cont.)

• Problem: Existing algo-diff slow, limited, unextensible

• Solution: Our own algo-diff

• Problem: Algo-diff requires functions templated on all args

• Solution: Our own density library, Eigen linear algebra

• Problem: Need unconstrained parameters for HMC

• Solution: Variable transforms w. Jacobian determinants

3

Why? (cont.)

• Problem: Need ease of use of BUGS

• Solution: Compile a domain-specific language

• Problem: Pure directed graphical language inflexible

• Solution: Imperative probabilistic programming language

• Problem: Need to tune parameters for HMC

• Solution: Tune step size and estimate mass matrix during
warmup; on-the-fly number of steps (NUTS)

4

Why? (cont.)

• Problem: Efficient up-to-proportion density calcs

• Solution: Density template metaprogramming

• Problem: Limited error checking, recovery

• Solution: Static model typing, informative exceptions

• Problem: Poor numerical stability

• Solutions: Taylor expansions, e.g., log1p()

compound functions, e.g., log_sum_exp(), BernoulliLogit()

limits at boundaries, e.g., multiply_log()

5

Why? (continued)

• Problem: Nobody knows everything

• Solution: Expand project team with specialists

• Problem: Expanding code and project team

• Solution: GitHub: branch, pull request, code review

• Solution: Jenkins: continuous integration

• Solution: ongoing refactoring and code simplification

6

Why? (continued)

• Problem: Heterogeneous user base

• Solution: More interfaces (R, Python, MATLAB, Julia)

• Solution: domain-specific examples, tutorials

• Problem: Restrictive licensing limits use

• Solution: Code and doc open source (BSD, CC-BY)

7

What is Stan?

• Stan is an imperative probabilistic programming language

– cf., BUGS: declarative; Church: functional; Figaro: object-oriented

• Stan program

– declares data and (constrained) parameter variables

– defines log posterior (or penalized likelihood)

• Stan inference

– MCMC for full Bayesian inference

– Black-Box VB for approximate Bayes

– MLE for penalized maximum likelihood estimation

8

Platforms and Interfaces
• Platforms: Linux, Mac OS X, Windows

• C++ API: portable, standards compliant (C++03)

• Interfaces

– CmdStan: Command-line or shell interface (direct executable)

– RStan: R interface (Rcpp in memory)

– PyStan: Python interface (Cython in memory)

– MatlabStan: MATLAB interface (external process)

– Stan.jl: Julia interface (external process)

– StataStan: Stata interface (external process) [under testing]

• Posterior Visualization & Exploration

– ShinyStan: Shiny (R) web-based

9

Who’s Using Stan?
• 1200 users group registrations; 10,000 manual down-

loads (2.5.0); 100+ published papers

• Biological sciences: clinical drug trials, entomology, opthalmol-

ogy, neurology, genomics, agriculture, botany, fisheries, cancer biology,

epidemiology, population ecology, neurology

• Physical sciences: astrophysics, molecular biology, oceanography,

climatology

• Social sciences: population dynamics, psycholinguistics, social net-

works, political science

• Other: materials engineering, finance, actuarial, sports, public health,

recommender systems, educational testing

10

Documentation

• Stan User’s Guide and Reference Manual

– 500+ pages

– Example models, modeling and programming advice

– Introduction to Bayesian and frequentist statistics

– Complete language specification and execution guide

– Descriptions of algorithms (NUTS, R-hat, n_eff)

– Guide to built-in distributions and functions

• Installation and getting started manuals by interface

– RStan, PyStan, CmdStan, MatlabStan, Stan.jl, StataStan

– RStan vignette

11

Books and Model Sets
• Model Sets Translated to Stan

– BUGS and JAGS examples (most of all 3 volumes)

– Gelman and Hill (2009) Data Analysis Using Regression and
Multilevel/Hierarchical Models

– Wagenmakers and Lee (2014) Bayesian Cognitive Modeling

• Books with Sections on Stan

– Gelman et al. (2013) Bayesian Data Analysis, 3rd Edition.

– Kruschke (2014) Doing Bayesian Data Analysis, Second Edi-
tion: A Tutorial with R, JAGS, and Stan

– Korner-Nievergelt et al. (2015) Bayesian Data Analysis in
Ecology Using Linear Models with R, BUGS, and Stan

12

Scaling and Evaluation

1e6

1e9

1e12

1e15

1e18

model complexity

da
ta

 s
iz

e
(b

yt
es

)

approach

state of the art

big model

big data

Big Model and Big Data

• Types of Scaling: data, parameters, models

• Time to converge and per effective sample size:

0.5–∞ times faster than BUGS & JAGS

• Memory usage: 1–10% of BUGS & JAGS

13

NUTS vs. Gibbs and Metropolis
The No-U-Turn Sampler

Figure 7: Samples generated by random-walk Metropolis, Gibbs sampling, and NUTS. The plots

compare 1,000 independent draws from a highly correlated 250-dimensional distribu-

tion (right) with 1,000,000 samples (thinned to 1,000 samples for display) generated by

random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000 samples for display)

generated by Gibbs sampling (second from left), and 1,000 samples generated by NUTS

(second from right). Only the first two dimensions are shown here.

4.4 Comparing the Efficiency of HMC and NUTS

Figure 6 compares the efficiency of HMC (with various simulation lengths λ ≈ �L) and
NUTS (which chooses simulation lengths automatically). The x-axis in each plot is the
target δ used by the dual averaging algorithm from section 3.2 to automatically tune the step
size �. The y-axis is the effective sample size (ESS) generated by each sampler, normalized by
the number of gradient evaluations used in generating the samples. HMC’s best performance
seems to occur around δ = 0.65, suggesting that this is indeed a reasonable default value
for a variety of problems. NUTS’s best performance seems to occur around δ = 0.6, but
does not seem to depend strongly on δ within the range δ ∈ [0.45, 0.65]. δ = 0.6 therefore
seems like a reasonable default value for NUTS.

On the two logistic regression problems NUTS is able to produce effectively indepen-
dent samples about as efficiently as HMC can. On the multivariate normal and stochastic
volatility problems, NUTS with δ = 0.6 outperforms HMC’s best ESS by about a factor of
three.

As expected, HMC’s performance degrades if an inappropriate simulation length is cho-
sen. Across the four target distributions we tested, the best simulation lengths λ for HMC
varied by about a factor of 100, with the longest optimal λ being 17.62 (for the multivari-
ate normal) and the shortest optimal λ being 0.17 (for the simple logistic regression). In
practice, finding a good simulation length for HMC will usually require some number of
preliminary runs. The results in Figure 6 suggest that NUTS can generate samples at least
as efficiently as HMC, even discounting the cost of any preliminary runs needed to tune
HMC’s simulation length.

25

• Two dimensions of highly correlated 250-dim normal

• 1,000,000 draws from Metropolis and Gibbs (thin to 1000)

• 1000 draws from NUTS; 1000 independent draws

14

Stan’s Autodiff vs. Alternatives

• Among C++ open-source offerings: Stan is fastest (for gradi-
ents), most general (functions supported), and most easily ex-
tensible (simple OO)

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1/16

1/4

1

4

16

64

22 24 26 28 210 212

dimensions

tim
e

/ S
ta

n'
s

tim
e

system
●

●

●

●

●

●

adept

adolc

cppad

double

sacado

stan

matrix_product_eigen

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

1/16

1/4

1

4

16

20 22 24 26 28 210 212 214

dimensions

tim
e

/ S
ta

n'
s

tim
e

system
●

●

●

●

●

●

adept

adolc

cppad

double

sacado

stan

normal_log_density_stan

15

Part I

Stan Front End

16

Estimate Proportion

data {

int<lower=0> N;

int<lower=0, upper=1> y[N];

}

parameters {

real<lower=0, upper=1> theta;

}

model {

theta ~ uniform(0,1);

for (n in 1:N)

y[n] ~ bernoulli(theta);

}

17

Maximum (Penalized) Likelihood

> library(rstan);

> N <- 5;

> y <- c(0,1,1,0,0);

> model <- stan_model("bernoulli.stan");

> mle <- optimizing(model, data=c("N", "y"));

...

> print(mle, digits=2)

$par $value (log density)

theta [1] -3.4

0.4

• Posterior: Beta(1+2,1+3); mode 0.40; mean 0.43

• Density: MLE w/o Jacobian; MCMC with Jacobian

18

Bayesian Posterior
> N <- 5; y <- c(0,1,1,0,0);
> fit <- stan("bernoulli.stan", data = c("N", "y"));
> print(fit, digits=2)

Inference for Stan model: bernoulli.
4 chains, each with iter=2000; warmup=1000; thin=1;

mean se sd 2.5% 50% 97.5% n_eff Rhat
theta 0.43 0.01 0.18 0.11 0.42 0.78 1229 1
lp__ -5.33 0.02 0.80 -7.46 -5.04 -4.78 1201 1

> hist(extract(fit)$theta)

Histogram of extract(fit)$theta

extract(fit)$theta

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0
0

10
0

20
0

30
0

40
0

19

Default Priors and Vectorization

• All parameters are uniform by default

• Probability functions can be vectorized (more efficient)

• Thus

theta ~ uniform(0,1);

for (n in 1:N)

y[n] ~ bernoulli(theta);

reduces to

y ~ bernoulli(theta);

20

Linear Regression
data {

int<lower=0> N;
vector[N] x;
vector[N] y;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
}

// for (n in 1:N)
// y[n] ~ normal(alpha + beta * x[n], sigma);

21

Logistic Regression (w. Matrices)
data {

int<lower=1> K;
int<lower=0> N;
matrix[N,K] x;
int<lower=0,upper=1> y[N];

}
parameters {

vector[K] beta;
}
model {

beta ~ cauchy(0, 2.5); // prior
y ~ bernoulli_logit(x * beta); // likelihood

}

• vectorized default prior for regression coefficients

• vectorized, logit-scale; y ~ bernoulli(inv_logit(x * beta))

22

Time Series Autoregressive: AR(1)
data {

int<lower=0> N; vector[N] y;
}
parameters {

real alpha; real beta; real sigma;
}
model {

for (n in 2:N)
y[n] ~ normal(alpha + beta * y[n-1], sigma);

}

• Likelihood more efficiently coded with vectorization as

tail(y, N - 1)
~ normal(alpha + beta * head(y, N - 1), sigma);

23

Generalized Linear Models

• Direct parameterizations more efficient and stable

• Logistic regression (boolean/binary data)

– y ~ bernoulli(inv_logit(eta));

– y ~ bernoulli_logit(eta);

– Probit via Phi (normal cdf)

– Robit (robust) via Student-t cdf

• Poisson regression (count data)

– y ~ poisson(exp(eta));

– y ~ poisson_log(eta);

– Overdispersion with negative binomial

24

GLMS, continued

• Multi-logit regression (categorical data)

– y ~ categorical(softmax(eta));

– y ~ categorical_logit(eta);

• Ordinal logistic regression (ordered data)

– Add cutpoints c

– y ~ ordered_logistic(eta, c);

• Robust linear regression (overdispersed noise)

– y ~ student_t(nu, eta, sigma);

25

Posterior Predictive Inference

• Parameters θ, observed data y, and data to predict ỹ

p(ỹ|y) =
∫
Θ
p(ỹ|θ) p(θ|y) dθ

• data {

int<lower=0> N_tilde;

matrix[N_tilde,K] x_tilde;

...

parameters {

vector[N_tilde] y_tilde;

...

model {

y_tilde ~ normal(x_tilde * beta, sigma);

26

Predict w. Generated Quantities
• Replace sampling with pseudo-random number generation

generated quantities {
vector[N_tilde] y_tilde;

for (n in 1:N_tilde)
y_tilde[n] <- normal_rng(x_tilde[n] * beta, sigma);

}

• Must include noise for predictive uncertainty

• PRNGs only allowed in generated quantities block

– more computationally efficient per iteration

– more statistically efficient with i.i.d. samples
(i.e., MC, not MCMC)

27

Example: Gaussian Process Estimation
data {
int<lower=1> N; vector[N] x; vector[N] y;

} parameters {
real<lower=0> eta_sq, inv_rho_sq, sigma_sq;

} transformed parameters {
real<lower=0> rho_sq; rho_sq <- inv(inv_rho_sq);

} model {
matrix[N,N] Sigma;
for (i in 1:(N-1)) {

for (j in (i+1):N) {
Sigma[i,j] <- eta_sq * exp(-rho_sq * square(x[i] - x[j]));
Sigma[j,i] <- Sigma[i,j];

}}
for (k in 1:N) Sigma[k,k] <- eta_sq + sigma_sq;
eta_sq, inv_rho_sq, sigma_sq ~ cauchy(0,5);
y ~ multi_normal(rep_vector(0,N), Sigma);

}

28

Gaussian Process Predictions

• Add predictors x_tilde[M] for points to predict

• Declare predicted values y_tilde[M] as unconstrained pa-
rameters

• Define Sigma[M+N,M+N] in terms of full append_row(x,
x_tilde)

• Model remains the same

append_row(y,y_tilde)

~ multi_normal(rep(0,N+M),Sigma);

29

Mixture of Two Normals
for (n in 1:N) {
real lp1; real lp2;

lp1 <- bernoulli_log(0, lambda)
+ normal_log(y[n], mu[1], sigma[1]);

lp2 <- bernoulli_log(1, lambda)
+ normal_log(y[n], mu[2], sigma[2]);

increment_log_prob(log_sum_exp(lp1,lp2));

• local variables reassigned; direct increment of log posterior

• log_sum_exp(α,β) = log(exp(α)+ exp(β))

• Much more efficient than sampling (Rao-Blackwell Theorem)

30

Other Mixture Applications

• Other multimodal data

• Zero-inflated Poisson or hurdle models

• Model comparison or mixture

• Discrete change-point model

• Hidden Markov model, Kalman filter

• Almost anything with latent discrete parameters

• Other than variable choice, e.g., regression predictors

– marginalization is exponential in number of vars

31

LKJ Density and Cholesky Factors

• Density on correlation matrices Ω

• LKJCorr(Ω |ν)∝ det(Ω)(ν−1)

– ν = 1 uniform

– ν > 1 concentrates around unit matrix

• Work with Cholesky factor LΩ s.t. Ω = LΩ L>Ω
– Density: LKJCorrCholesky(LΩ |ν)∝ |J|det(LΩ L>Ω)(ν−1)

– Jacobian adjustment for Cholesky factorization

Lewandowski, Kurowicka, and Joe (2009)

32

Covariance Random-Effects Priors

parameters {
vector[2] beta[G];
cholesky_factor_corr[2] L_Omega;
vector<lower=0>[2] sigma;

model {
sigma ~ cauchy(0, 2.5);
L_Omega ~ lkj_cholesky(4);
beta ~ multi_normal_cholesky(rep_vector(0, 2),

diag_pre_multiply(sigma, L_Omega));
for (n in 1:N)

y[n] ~ bernoulli_logit(... + x[n] * beta[gg[n]]);

• G groups with varying slope and intercept; gg indicates group

33

Dynamic Systems with Diff Eqs

• Simple harmonic oscillator

d
dt
y1 = −y2

d
dt
y2 = −y1 − θy2

• Code as a function in Stan

functions {
real[] sho(real t, real[] y, real[] theta,

real[] x_r, int[] x_i) {
real dydt[2];
dydt[1] <- y[2];
dydt[2] <- -y[1] - theta[1] * y[2];
return dydt;

}
}

34

Fit Noisy State Measurements
data {
int<lower=1> T; real y[T,2];
real t0; real ts[T];

}
parameters {
real y0[2]; // unknown initial state
real theta[1]; // rates for equation
vector<lower=0>[2] sigma; // measurement error

}
model {
real y_hat[T,2];
...priors...
y_hat <- integrate_ode(sho, y0, t0, ts, theta, x_r, x_i);
for (t in 1:T)

y[t] ~ normal(y_hat[t], sigma);
}

35

Part II

What Stan Does

36

Full Bayes: No-U-Turn Sampler

• Adaptive Hamiltonian Monte Carlo (HMC)

– Potential Energy: negative log posterior

– Kinetic Energy: random standard normal per iteration

• Adaptation during warmup

– step size adapted to target total acceptance rate

– mass matrix (scale/rotation) estimated with regularization

• Adaptation during sampling

– simulate forward and backward in time until U-turn

– slice sample along path

(Hoffman and Gelman 2011, 2014)

37

Posterior Inference

• Generated quantities block for inference:
predictions, decisions, and event probabilities

• Extractors for samples in RStan and PyStan

• Coda-like posterior summary

– posterior mean w. MCMC std. error, std. dev., quantiles

– split-R̂ multi-chain convergence diagnostic (Gelman/Rubin)

– multi-chain effective sample size estimation (FFT algorithm)

• Model comparison with WAIC

– in-sample approximation to cross-validation

38

Penalized MLE

• Posterior mode finding via L-BFGS optimization
(uses model gradient, efficiently approximates Hessian)

• Disables Jacobians for parameter inverse transforms

• Models, data, initialization as in MCMC

• Standard errors on unconstrained scale
(estimated using curvature of penalized log likelihood function

• Very Near Future

– Standard errors on constrained scale)
(sample unconstrained approximation and inverse transform)

39

“Black Box” Variational Inference

• Black box so can fit any Stan model

• Multivariate normal approx to unconstrained posterior

– covariance: diagonal mean-field or full rank

– not Laplace approx — around posterior mean, not mode

– transformed back to constrained space (built-in Jacobians)

• Stochastic gradient-descent optimization

– ELBO gradient estimated via Monte Carlo + autdiff

• Returns approximate posterior mean / covariance

• Returns sample transformed to constrained space

40

Stan as a Research Tool

• Stan can be used to explore algorithms

• Models transformed to unconstrained support on Rn

• Once a model is compiled, have

– log probability, gradient, and Hessian

– data I/O and parameter initialization

– model provides variable names and dimensionalities

– transforms to and from constrained representation
(with or without Jacobian)

41

Part IV

Stan Language

42

Basic Program Blocks

• data (once)

– content: declare data types, sizes, and constraints

– execute: read from data source, validate constraints

• parameters (every log prob eval)

– content: declare parameter types, sizes, and constraints

– execute: transform to constrained, Jacobian

• model (every log prob eval)

– content: statements definining posterior density

– execute: execute statements

43

Derived Variable Blocks

• transformed data (once after data)

– content: declare and define transformed data variables

– execute: execute definition statements, validate constraints

• transformed parameters (every log prob eval)

– content: declare and define transformed parameter vars

– execute: execute definition statements, validate constraints

• generated quantities (once per draw, double type)

– content: declare and define generated quantity variables;
includes pseudo-random number generators
(for posterior predictions, event probabilities, decision making)

– execute: execute definition statements, validate constraints

44

Variable and Expression Types
Variables and expressions are strongly, statically typed.

• Primitive: int, real

• Matrix: matrix[M,N], vector[M], row_vector[N]

• Bounded: primitive or matrix, with
<lower=L>, <upper=U>, <lower=L,upper=U>

• Constrained Vectors: simplex[K], ordered[N],
positive_ordered[N], unit_length[N]

• Constrained Matrices: cov_matrix[K], corr_matrix[K],
cholesky_factor_cov[M,N], cholesky_factor_corr[K]

• Arrays: of any type (and dimensionality)

45

Logical Operators

Op. Prec. Assoc. Placement Description

|| 9 left binary infix logical or

&& 8 left binary infix logical and

== 7 left binary infix equality
!= 7 left binary infix inequality

< 6 left binary infix less than
<= 6 left binary infix less than or equal
> 6 left binary infix greater than
>= 6 left binary infix greater than or equal

46

Arithmetic and Matrix Operators
Op. Prec. Assoc. Placement Description

+ 5 left binary infix addition
- 5 left binary infix subtraction

* 4 left binary infix multiplication
/ 4 left binary infix (right) division

\ 3 left binary infix left division

.* 2 left binary infix elementwise multiplication

./ 2 left binary infix elementwise division

! 1 n/a unary prefix logical negation
- 1 n/a unary prefix negation
+ 1 n/a unary prefix promotion (no-op in Stan)

^ 2 right binary infix exponentiation

’ 0 n/a unary postfix transposition

() 0 n/a prefix, wrap function application
[] 0 left prefix, wrap array, matrix indexing

47

Built-in Math Functions

• All built-in C++ functions and operators
C math, TR1, C++11, including all trig, pow, and special log1m, erf, erfc,

fma, atan2, etc.

• Extensive library of statistical functions
e.g., softmax, log gamma and digamma functions, beta functions, Bessel

functions of first and second kind, etc.

• Efficient, arithmetically stable compound functions
e.g., multiply log, log sum of exponentials, log inverse logit

48

Built-in Matrix Functions
• Basic arithmetic: all arithmetic operators

• Elementwise arithmetic: vectorized operations

• Solvers: matrix division, (log) determinant, inverse

• Decompositions: QR, Eigenvalues and Eigenvectors,
Cholesky factorization, singular value decomposition

• Compound Operations: quadratic forms, variance scaling

• Ordering, Slicing, Broadcasting: sort, rank, block, rep

• Reductions: sum, product, norms

• Specializations: triangular, positive-definite, etc.

49

User-Defined Functions (Stan 2.3)
• functions (compiled with model)

– content: declare and define general (recursive) functions
(use them elsewhere in program)

– execute: compile with model

• Example

functions {

real relative_difference(real u, real v) {
return 2 * fabs(u - v) / (fabs(u) + fabs(v));

}

}

50

Differential Equation Solver
• System expressed as function

– given state (y) time (t), parameters (θ), and data (x)

– return derivatives (∂y/∂t) of state w.r.t. time

• Simple harmonic oscillator diff eq

real[] sho(real t, // time
real[] y, // system state
real[] theta, // params
real[] x_r, // real data
int[] x_i) { // int data

real dydt[2];
dydt[1] <- y[2];
dydt[2] <- -y[1] - theta[1] * y[2];
return dydt;

}

51

Differential Equation Solver

• Solution via functional, given initial state (y0), initial time
(t0), desired solution times (ts)

mu_y <- integrate_ode(sho, y0, t0, ts, theta, x_r, x_i);

• Use noisy measurements of y to estimate θ

y ~ normal(mu_y, sigma);

– Pharmacokinetics/pharmacodynamics (PK/PD),

– soil carbon respiration

52

Diff Eq Derivatives

• Need derivatives of solution w.r.t. parameters

• Couple derivatives of system w.r.t. parameters(
∂
∂t
y,

∂
∂t
∂y
∂θ

)

• Calculate coupled system via nested autodiff of second
term

∂
∂θ
∂y
∂t

53

Distribution Library

• Each distribution has

– log density or mass function

– cumulative distribution functions, plus complementary ver-
sions, plus log scale

– pseudo Random number generators

• Alternative parameterizations
(e.g., Cholesky-based multi-normal, log-scale Poisson, logit-scale Bernoulli)

• New multivariate correlation matrix density: LKJ
degrees of freedom controls shrinkage to (expansion from) unit matrix

54

Statements

• Sampling: y ~ normal(mu,sigma) (increments log probability)

• Log probability: increment_log_prob(lp);

• Assignment: y_hat <- x * beta;

• For loop: for (n in 1:N) ...

• While loop: while (cond) ...

• Conditional: if (cond) ...; else if (cond) ...; else ...;

• Block: { ... } (allows local variables)

• Print: print("theta=",theta);

55

Part V

Challenges for Stan

56

Models with Discrete Parameters

• e.g., simple mixture models, survival models, HMMs, dis-
crete measurement error models, missing data

• Marginalize out discrete parameters

• Efficient sampling due to Rao-Blackwellization

• Inference straightforward with expectations

• Too difficult for many of our users
(exploring encapsulation options)

57

Models with Missing Data

• In principle, missing data just additional parameters

• In practice, how to declare?

– observed data as data variables

– missing data as parameters

– combine into single vector
(in transformed parameters or local in model)

58

Position-Dependent Curvature
• Mass matrix does global adaptation for

– parameter scale (diagonal) and rotation (dense)

• Dense mass matrices hard to estimate (O(N2) estimands)

• Problem: Position-dependent curvature

– Example: banana-shaped densities

* arise when parameter is product of other parameters

– Example: hierarchical models

* hierarhcical variance controls lower-level parameters

• Mitigate by reducing stepsize

– initial (stepsize) and target acceptance (adapt_delta)

59

Part VI

Next for Stan

60

Higher-Order Auto-diff

• Forward-mode auto-diff for all functions

– May punt some cumulative distribution functions

– Black art iterative algorithms required

• Code complete; under testing

61

Riemannian Manifold HMC
• Best mixing MCMC method (fixed # of continuous params)

• Moves on Riemannian manifold rather than Euclidean

– adapts to position-dependent curvature

• geoNUTS generalizes NUTS to RHMC (Betancourt arXiv)

• SoftAbs metric (Betancourt arXiv)
– eigendecompose Hessian and condition

– computationally feasible alternative to original Fisher info metric
of Girolami and Calderhead (JRSS, Series B)

– requires third-order derivatives and implicit integrator

• Code complete; awaiting higher-order auto-diff

62

Adiabatic Sampling

• Physically motivated alternative to “simulated” annealing
and tempering (not really simulated!)

• Supplies external heat bath

• Operates through contact manifold

• System relaxes more naturally between energy levels

• Betancourt paper on arXiv

• Prototype complete

63

Maximum Marginal Likelihood

• Fast, Approximate Inference

• Marginalize out lower-level parameters

• Optimize higher-level parameters and fix

• Optimize lower-level parameters given higher-level

• Errors estimated as in MLE

• Design complete; awaiting parameter tagging

64

“Black Box” EP

• Fast, approximate inference (like VB)

– VB and EP minimize divergence in opposite directions

– especially useful for Gaussian processes

• Asynchronous, data-parallel expectation propagation (EP)

• Cavity distributions control subsample variance

• Prototypte stage

• collaborating with Seth Flaxman, Aki Vehtari, Pasi Jylänki, John

Cunningham, Nicholas Chopin, Christian Robert

65

The End

66

Questions from Chad Scherer

1. What were the best design decisions you made?

• Anything you would do differently?

2. What new capability would most change the way proba-
bilistic programming is used?

3. Any thoughts on characterizing some portion of the de-
sign space of probabilistic programming?

4. Any experience, ideas, or caveats on “democratizing” this
kind of modeling?

67

Answers

• Best: define log density not graphical model, use C++

• Worst: use C++, define log density not graphical model

• Design: Stan programs use “random” variables, but only to
define density and predictions imperatively (no metapro-
gramming, lacks modularity)

• Democratizing: remove the programming — scientists and
statisticians want statistical/computational robustness, not
a programming challenge

• New capabilities: Riemannian and adiabatic HMC for hard
problems; VB, EP, and MML for fast approximation

68

Stan’s Namesake

• Stanislaw Ulam (1909–1984)

• Co-inventor of Monte Carlo method (and hydrogen bomb)

Ulam holding the Fermiac, Enrico Fermi’s physical Monte Carlo simulator

for random neutron diffusion

69

